IAN SINCLAIR

_ THEZX

The ZX Spectrum
How to Use and Program

IAN SINCLAIR

The ZX Spectrum
How to Use and Program

A

PANTHER
Granada Publishing

Panther Books
Granada Publishing Ltd
8 Grafton Street. London WIX 3LA

Published by Panther Books 1983
A Granada Paperback Original
Copyright @lan Sinclair 1983

British Library Cataloguing in Publication Data
Sinclair, Ian

The ZX Spectrum: how to use and program

1. Sinclair ZX Spectrum (Computer)

L. Title

001.64'04 QA76.8.5625

ISBN 0-586-06104-5

Printed and bound in Great Britain by
Cox & Wyman Ltd, Reading

All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording or otherwise,
without the prior permission of the publishers.

This book is sold subject to the conditions that it
shall not, by way of trade or otherwise be lent,
re-sold, hired out or otherwise circulated

without the publisher's prior consent in any
form of binding or cover other than that in
which it is published and without a similar
condition including this condition being imposed
on the subsequent purchaser.

Contents

Preface

I Hardware

2 Screen Messages

3 Spice Of Life?

4 Repeating The Process

5 String Along With Spectrum
6 Do It Yourself!

7 Special Effects

8 High Resolution Graphics

9 Sound Sense

The Game - Squids In

A Data Processing Program - Datamaster

Appendix A Cassette Loading Problems

Appendix B A Useful Hint on Saving Data

Index

Vil

13
22
31
43
54
66
79
93
98
102
112
115
116

pr——

Preface

This book has been planned as an introduction to Spectrum
computing for the family user. No book of less than encyclopaedia
length can hope to deal with all the actions of a modern
microcomputer in detail, and this is no exception. What 1 have done
is to concentrate on the features of the Spectrum which are of most
interest and utility to the family user, as distinct from the educational,
scientific or engineering user. These selected features are dealt with in
detail, using examples which are short and easy to type, and they are
recalled in the games program of Chapter 10 and the information
storage program of Chapter 11.

From this launch-pad, you can go where you please! When you
have completed this book, you will know what Spectrum can do and
you will be better able to decide what you want of your computer.
You will also find that you have gained a better understanding of the
‘Manual for the Spectrum so that you can, if you wish, delve into the
ructions that are intended to be used by the more experienced
grammer.

lan Sinclair

Chapter 1
Hardware

The hardware of computing consists of all the bits that you can drop
and spill coffee over. For the Spectrum, that means the computer
itself, the ZX power supply, and the connecting leads. The first action
that you have to see to is connecting a plug to the mains cable of the
ZX power supply. This, for most houses in Britain, means connecting
a three-pin mains plug of the type that is shown in Fig. 1.1. There are

Earth (not used)

Blue Lead Fuse (3A)

Pl
Cable Clamp S Brown Lead
Cable
Fig. 1.1. Connecting the mains plug.

only two connections to make, the live and the neutral. The live lead is
colour-coded brown (a very light brown) and the neutral lead is coded
blue. They should be connected as indicated in Fig. 1.1. If you haven’t
connected up a three-pin plug before, or if you have any doubts, take
the plug and the ZX power supply to an electrician to have the plug
fitted.

With that hurdle over, you are almost ready to work some
Spectrum magic, but you need the use of a TV receiver. A computer is
a device which is arranged so as to send signals to a TV receiver, and
unless you connect a TV receiver to the Spectrum you won'’t be able to

2 The ZX Spectrum

see what the Spectrum is doing. It will still compute for you just as
well, but you won’t see what is going on.

The Spectrum comes with its TV cable ready to attach, with an
aerial plug at one end of the lead, and a different type of plug (a phono
plug) at the other end. The two different plugs are illustrated in Fig.
1.2. You could, of course, simply plug this lead into the TV receiver,

T.V. Cable

End which plugs End which
into Spectrum plugsinto T.V.
(Phono plug)

Fig. 1.2. The two different plugs on the TV cable.

but a better option is to use the type of 2-to-1 adaptor that is
illustrated in Fig. 1.3. This allows you to keep an aerial cable plugged
in, and to connect or disconnect the Spectrum as you wish without
disturbing the TV receiver. It’s useful if you have to share a colour TV
with the family. It also saves wear on the aerial connector of the TV
receiver itself. If you have a TV that you can reserve for use with the
Spectrum then you won’t need this device. The TV that you use to
display the Spectrum’s signals need not be a colour receiver, not to
start with at least. The skills of programming a Spectrum do not
require you to see the results in colour until you come to the colour
instructions of the Spectrum in Chapter 7. If you use a black/white
receiver, such as the little Ferguson portable which has served me so
well, you will see the Spectrum colours as shades of grey.

Aerial Lead in here

Lead from Spectrum—""
in here

Plugsinto T.V.

Fig. 1.3. A useful 2-to-1 TV adaptor. This is sold in TV stores as a Panda-Pack.

Hardware 3

Socket and see

Now before you plug in everything in sight and switch on, it's a good
idea to see how many mains sockets you have around. When you are
in full control of your Spectrum you will need three main sockets.
Two of these will be for the Spectrum and the TV receiver, but you
will need one more for a cassette recorder. Most houses have
desperately few sockets fitted, so you will find it worthwhile to buy or
make up an extension lead that consists of a three- or four-way socket
strip with a cable and a plug (Fig. 1.4). This avoids a lot of what the

Fig. 1.4. A four-way socket strip which avoids the use of the old-style adaptors.

famous advert calls ‘spaghetti hanging out the back’. Don’t rely on
the old-fashioned type of three-way adaptor - they never produce
really reliable contacts. The Spectrum has no mains switch, so it’s an
advantage if you can connect it to a switched socket. If you can’t, then
always switch on and off by plugging and unplugging the three-pin
mains plug. Never switch the Spectrum on and off by using the little
Jack plug which connects the ZX power supply to the Spectrum. The
reason is that the small socket that this plug fits into can become
loose, and when this happens, you simply won’t be able to rely on the
connection. When a computer is disconnected from its power supply,
it instantly loses anything that was in its memory. If you have just
spent an hour typing instructions on the keyboard, you won’t be
wildly happy if a twitch on the power-supply lead causes you to lose
the lot!

The next step, then, is to switch on the TV receiver, and the
Spectrum. The signals have to be transmitted, using a miniature
transmitter that is called a modulator. This is because most TV
receivers cannot be safely connected to anything except by the aerial
lead.

The TV receiver has to be tuned to these signals from the Spectrum.
Unless you have been using a video cassette recorder and the TV hasa

4 The ZX Spectrum

tuning button that is marked ‘VCR’, it’s unlikely that you will be able
to get the Spectrum tuning signal to appear on the screen of the TV
simply by pressing tuning buttons. The next step, then, is to tune the
TV to the Spectrum’s signals.

Figure 1.5 shows the three main methods that are used for tuning
TV receivers in this country. The simplest type is the dial tuning system

|_ (b) Select by
pushing in.
Tune by twisting

(a) Tuning dial-
turn to tune

o2

\

<

[

| Tuning Panel Cover

[

Adjusting
eel
(turn to tune)

(c) Selector Switch-press

Fig. 1.5. TV tuning controls. (a) Single dial, as used on black and white portables,
(b) four-button type, (c) the more modern touch-pad or miniature switch type.

that is illustrated in Fig. 1.5(a). This is the type of tuning system that
you find on black/white portables, and to get the Spectrum’s signal
on the screen, you only have to turn the dial. If the dial is marked with
numbers, then you should look for the signal somewhere between
numbers 30 and 40. If the dial isn’t marked, which is unusual, then

Hardware B

start with the dial turned fully anti-clockwise as far as it will go, and
slowly turn it clockwise until you see the Spectrum signal appear.

What you are looking for, if the Spectrum hasn’t been touched since
you switched it on, is the phrase ‘e 1982 Sinclair Research 1.td.’ on the
screen. When you can see these words, turn the dial carefully, turning
slightly in each direction until you find a setting in which the words
are really clear. On a TV receiver, particularly a colour TV, the words
may never be particularly clear, but get them steady at least and as
clear as possible. Figure 1.6 illustrates some faults that are caused by

‘Ghost’ images Fuzzy letter shape
after a letter

White ‘blobs’ between letters
Fig. 1.6. Picture defects caused by faulty tuning.

The older types of colour and B/ W TV receivers used mechanical
push-buttons (Fig. 1.5(b)) which engage with a loud clonk when you
push them. There are usually four of these buttons, and you'll need to
use a spare one which for most of us means the fourth one. Push this
one in fully. Tuning is now carried out by rotating this button. Try
rotating anti-clockwise first of all, and don’t be surprised by how
many times you can turn the button before it comes to a stop. If you
tune to the Spectrum’s signal during this time, you’ll see the same sign
- the message on the screen. If you've turned the button all the way
anti-clockwise and not seen the tuning signal, then you’ll have to turn
it in the opposite direction, clockwise, until you do. If you can’t find
the Spectrum signal at any setting, check the TV using an aerial in
case there is something wrong with the tuning of the TV.

Modern TV receivers are equipped with touch pads or very small
push-buttons for selecting transmissions. These are used for selection
only, not for tuning. The tuning is carried out by a set of miniature
knobs or wheels that are located behind a panel which may be at the

6 The ZX Spectrum

side or at the front of the receiver (Fig. 1.5(c)). The buttons or touch
pads are usually numbered, and corresponding numbers are marked
on the tuning wheels or knobs. Use the highest number available
(usually 6 or 12), press the pad or button for this number, and then
find the knob or wheel which also carries this number. Tuning is
carried out by turning this knob or wheel. Once again, you are
looking for a clear picture on the screen. On this type of receiver, the
picture is usually ‘fine-tuned’ automatically when you put the cover
back on the tuning panel, so don’t leave this cover off. If you do, the
receiver’s circuits that keep it in tune can’t operate, and you will find
that the tuning alters, so that you have to keep re-tuning.

Mystery and mastery

Once you have achieved a tuned signal from your Spectrum, the
business of mastering the Spectrum magic begins. To start with, you
have the copyright notice shining at you from the bottom of the
screen. It’simportant to note that nothing that you can do by pressing
keys on the keyboard can possibly damage the Spectrum - the worst
you can do is to lose a program that was stored in the memory. You
can, however, damage the Spectrum by spilling coffee all over it,
dropping it, or connecting it up to other circuits while the power is
switched on. Pressing keys at random can, however, cause the
computer to look as if it has ‘seized up’, refusing to do anything. You
can always escape from these tantrums in two ways. One way is to
press the keys at the opposite ends of the nearest row. They are
marked CAPS SHIFT and SPACE, with the word BREAK printed
above SPACE. Pressing these keys together will nearly always
restore normal operation. In the very few cases in which this doesn’t
work, you will have to switch off and on again. By doing this,
however, you will lose any program that was in the memory, so the
use of the two keys is always preferable.

It’s time now to look at the keyboard, because the keyboard is the
way that you pass instructions to the Spectrum. Most of the
Spectrum keys are arranged rather like typewriter keys. The
arrangement of letters and numbers is the same as that of a
typewriter. If you’ve ever used a typewriter, particularly an electric
typewriter, then you should be able to find your way round the
keyboard of the Spectrum pretty quickly.

There’s one very noticeable difference, though. Whereas each key

Hardware 7

of a typewriter will give only two actions — for example, a capital
letter and a small letter - each Spectrum key can give about five
actions! This is done in two ways. One way is the order in which you
use the keys, and we’ll learn about that as we go along. The other is
the use of the two SHIFT keys. One of these is the CAPS SHIFT that
we have noted already, the other is the SYMBOL SHIFT which is
next to the SPACE key, near the right-hand side of the first row of
keys. The SYMBOL SHIFT key is marked in red because it has to be
used to obtain the words and symbols that are marked in red on the
other keys. Once again, we’ll go into that later. As you will see, the
Spectrum will guide you so that you press the keys correctly!

As well as the ordinary typewriter keys, there are two special keys
which are not found on any typewriter. The SYMBOL SHIFT keyis
one of these. The more important of these special keys, however, as
far as we are concerned at the moment, is the key that is marked
ENTER. This is in the position of the ‘carriage return’ key of an
electric typewriter, but its action is not the same in all respects.
Pressing the ENTER key is a signal to the computer that you have
completed typing an instruction and that you now want the computer
to obey it.

If you are accustomed to using an electric typewriter, you will have
to change some of your habits as far as this key is concerned. During
the use of a typewriter, you would press the ‘carriage return’ key each
time you wanted to select a new line, with typing starting at the left-
hand side of the new line. The ENTER key of the computer does
rather more than this. If the material that you are typing into the
Spectrum takes more than one line on the screen, the machine will
automatically select the next screen line for you. The ENTER key
must not be used for this purpose. The ENTER key is used only when
you want the machine to carry out a command or store an
instruction, not simply when you want to use a new line. It will always
provide a new line for you, however, and select a position at the left-
hand side. The position where a letter or other character will appear
when you press a key is indicated by a flashing letter on the bottom
line of the screen. This flashing letter is calied the ‘cursor’, and it acts
as a sort of signpost for you, as we’ll see later.

Save it!

You can obtain a lot of enjoyment from a computer system that

B e

8 The ZX Spectrum

consists only of the machine and a TV receiver. Each time that you
switch the machine off, however, all the program and other
information that has been stored in the memory of the computer will
be lost. Since it might take several hours to enter a program into the
machine by typing instructions on the keyboard, this waste just has to
beavoided. We avoid the loss of programs by recording them on tape.
Before you tackle the rest of this book, then, it’s important to check
now that you can record and replay programs.

Almost any cassette recorder is suitable, but if you are buying a
recorder specially for computer use, get one which is mains or battery
operated, has a tape counter and automatic recording level control.
Most small portable cassette recorders have these features, but hi-fi
and other stereo recorders are usually unsuitable. I have used a
Trophy CR100 recorder for years with very satisfactory results, and
Boots now sell an identical machine, Boots CR325. Recorders by
Sanyo, Hitachi and Sharp have also proved satisfactory. If you are
buying a cassette recorder to use with your Spectrum, it’s a good idea
to ask the shop to demonstrate it being used along with a Spectrum,
because not all cassette recorders work equally well.

Start work by switching everything off. Now find the cassette lead
of the Spectrum. This has two small plugs at each end. These small
plugs, which are called jack-plugs, are colour-coded. The black plug
which is fitted at one end of the lead engages into the socket on the
cassette recorder that is marked MIC or which has a drawing of a
microphone. The black plug at the other end of the lead fits into the
socket which is marked MIC on the back of the SPECTRUM. The
other plug, coloured grey, fits into the EAR socket on the Spectrum,
and will later fit into the EAR socket of the recorder. This socket may
be marked with a drawing of an ear. Don’t, however, push this plug
into the recorder at the moment. Try to cultivate the habit of leaving
it out unless you are replaying a cassette. The Spectrum uses only
these two plugs.

Once you have made the connections between the MIC sockets, the
cassette recorder is ready for use. It’s preferable to run the recorder
from the mains because battery life can be unpredictable, and if your
batteries decide to fail while you are recording, you will probably lose
the program. The next thing that you have to sort out is a supply of
blank cassettes. There’s nothing wrong with using reputable brands
of C90 length cassettes (ordinary ‘ferric’ tape, not the hi-fi CrO, type),
but you’ll find that the short lengths of tape that are sold as C5, C10 or

Hardware 9
t

C15 in computer shops and in most branches of Boots, W. H. Smiths
and Currys are much more useful.

Put a fresh cassette into the machine, with the 1 or A side
uppermost. The first part of the cassette consists of a ‘leader’, which is
plain, not recording, tape. This has to be wound on before you can
record. If your recorder has a tape counter, reset the counter to zero,
and then fast-wind the cassette to a count of 5. If there is no tape
counter, take the cassette out and insert the body of a BiC pen into the
centre of the empty reel. Turn the pen so that the tape winds on to the
reel, and keep turning until you see the brown recording tape replace
the clear or brightly coloured leader.

Now before youcan make a recording to test the system, you need a
program to record, and this involves some typing. This is easy if you
have just switched the Spectrum on, but if you have been pressing
keys at random, then it’s a good idea to switch off again, then on.
Press the ENTER key when you see the copyright notice appear, and
your Spectrum is ready for testing.

Type the number 1§ (1 and then), and then press the ‘E’ key. This
will place the word REM on the bottom line of the screen, just
following the 1¢. Check that this looks correct, and then press the
ENTER key. The effect of this is to place the instruction line 1 REM
into the memory of the Spectrum. Now type the rest of the lines, as
illustrated in Fig. 1.7, remembering to press the ENTER key after you
have completed typing each line. The numbers are called ‘line

1@ REM
280 REM
3@ REM
4@ REM

Fig. 1.7. A program for testing the cassette recording and replaying actions.

numbers’, and they are there for two reasons. One is to remind the
computer that this is a program, the other is to guide it, because the
computer will normally carry out instructions in the same order as the
line numbers. Following a line number, the computer must have an
instruction word, and that’s why the word REM appears rather than
the letter ‘E’ when you press the E key.

Check that your program looks on the screen like the printed
version in Fig. 1.7, and make sure that the cassette recorder is ready.
Now press the S key, which will produce the instruction word SAVE
on the screen. SAVE is the instruction to the computer meaning that

10 The ZX Spectrum

you want to save (record) a program on a cassette. This action will
also cause the flashing letter to change to an ‘L’. This won’t do by
itself, however. You now have to put in quote marks (inverted
commas). This is done by holding down the SYMBOL SHIFT key
and, while this is held down, pressing the ‘P’ key. You can see the
quote marks on the P key in red. Now press the ‘a’ key, to obtain a
letter ‘a’. The “a” is a filename which the computer will use to
recognise the program if it is asked to. You must put in another
quote mark (inverted commas, obtained by pressing SYMBOL
SHIFT and P at the same time), otherwise the computer cannot carry
out the instruction. Press ENTER now, and you will see the message
‘Start tape, then press any key’ appear on the bottom line of the
screen. Now start the recorder by pressing its PLAY and RECORD
keys. Press them firmly so that they lock in place, and you will see the
reels of the cassette turning. When the recorder is working, press the
ENTER key on the Spectrum — you can, in fact, press any key. You
will then see the centre of the screen clear, and a set of bands appear
round the borders. If you are using a colour TV you will see that these
bands are coloured. There are two lots of bands, so don’t be tempted
to switch off the recorder too soon. After a very short time, the cursor
of the Spectrum will reappear on the screen with a ‘9 OK, §:I’
message. This lets you know that the program has been recorded, and
you can switch the recorder off - that’s all. Now set the volume
control of the recorder to half-way along its range, and the tone
control, if any, to maximum treble.

Now comes the crunch. You have to be sure that the recording was
O.K. The first thing to do is to plug the EAR connection into the
recorder. Wind back the tape, using the rewind key of the recorder,
and type:

VERIEY

You get this by holding down the CAPS SHIFT key, and tapping
first the SYMBOL SHIFT key and then the ‘R’ key in turn while
CAPS SHIFT is held down. When you see the word on the screen,
press the SYMBOL SHIFT key along with the ‘P’ key to get the
quote mark, and then press the ‘a’ key by itself to get the letter ‘a’.
Then press SYMBOL SHIFT and ‘P’ to get the other quote mark.
Now press ENTER this command will cause the Spectrum to
compare what is stored in its memory with the program that you
recorded. It can’t do so, however, until you play the program back.

Hardware 11

Press the PLAY key of the recorder, and wait. You will see the border
of the screen flash slowly. After a time, you should see the screen clear
and the border display moving stripes again. When the screen shows
the message ‘) OK, §:1’ you can stop the recorder. Your cassette
recording is O.K., and correct recordings are being made. Just to
show that the program has indeed been recorded, wind back the tape
again. Type NEW by pressing the ‘A’ key and press ENTER. This
should have wiped your program from the memory. Now type LIST
by pressing the ‘K’ key and press ENTER. Nothing should appear -
LIST means put a list of the program instructions on the screen, and
there shouldn’t be any!

You can now load the instructions in from the tape. Type LOAD
by pressing the ‘J’ key, and then put in “a” in the same way as before,
and press ENTER. Now press the PLAY key of the recorder (did you
rewind the tape?). The stripes will appear to show you that the
program is loading, and the message will show when the loading
operation is complete. When this appears, the program is in place,
and the recorder can be stopped. Type LIST now (‘K’ key), then press
the ENTER key. You should see your program appear on the screen.

Once you can reliably save programs on tape, verify them, and re-
load them, you can confidently start computing. When you have
spent an hour or more typinga program on to the keyboard, it’s good
to know that a few minutes more work will save your effort on tape so
that you won't have to type it again.

What can go wrong? Bad connections, mainly, and the Table in
Fig. 1.8 should help you to trace the source of problems. The essential
thing to remember is that the EAR plug must be disconnected while
you are recording a program. One other problem remains, however,
which you may find puzzling. Even thoujéh youcanrecord and replay
your own programs, you may find that when you buya programona
cassette it refuses to load at any setting of the recorder’s volume
control. This is nearly always because the head of the cassette
recorder needs attention and there’s advice on this problem in
Appendix A. Try loading the ‘HORIZONS’ tape that comes with
your Spectrum. This tape contains a check for correct volume control
level, and the first parts of the tape are concerned with checking that
this is set. If you can load this tape with no problems, then your
recorder is O.K. If you cannot load this tape, an audio dealer should
be able to adjust the tape recorder for you.

12 The ZX Spectrum

Error Check List

Note. Computer manuals always state that any cassette recorder can
be ysed along with computers. A few recorders, however, have proved
to be completely unsatisfactory, because they are unable to cope with
the strong signals that the Spectrum (and other computers) send out.
Unfortunately, some stores sell as suitable for computer use a recorder
that appears to cause considerable trouble, unless it is modified. If you
buy a recorder specially to use with your Spectrum, you should insist
on seeing it save and load a program first.

1. Check first of all to find if anything has been recorded on your
cassette. Pull out both plugs from the recorder, rewind the cassette,
and play it, with the volume control about quarter way up. Listen to
the tape. If you hear a shrill rasping noise, quite loud, then the program
has probably recorded. If there is no sound, or just a low-pitched hum,
then it hasn’t recorded - so go to 6.

2. If the program was recorded but did not VERIFY correctly or
LOAD again, you may have recorded it with the EAR plug in place.
Try a new recording, making sure that the EAR plug is out when you
make the recording. Allow a few seconds between pressing the PLAY
and RECORD keys on the recorder and pressing any Spectrum key to
start the recording.

3. Make sure that the EAR plug is in place when you VERIFY or
LOAD. The setting of the volume control may be critical on your
recorder. Try a range of settings, altering the control only slightly
between attempts. Use the CAPS SHIFT and SPACE keys to end a
LOAD attempt before you try with another setting. Once you have
achieved the correct setting, mark it!

4. Make sure that the plugs are correctly connected at each end.

5. Don't try to record over a previous recording. If you really want to
re-use cassettes, clear them by using a ‘bulk eraser’. Use a reliable
brand of recording tape, the ordinary ‘ferric’ variety rather than the hi-
fi ‘chrome’ type. Don’t use long lengths of tape.

6. Make sure that the recorder is capable of recording, by using its
microphone to record a few spoken words, and then play them back.

7. If all else fails, have your recording leads checked by a Spectrum
dealer. If these seem all right, borrow another cassette recorder. Once
you have exhausted all of these possibilities, the only remaining item is
to return the Spectrum and request it to be checked by the dealer.

Fig. 1.8. A check list for recording faults.

Chapter 2
Screen Messages

Chapter | will have broken you in to the idea that the Spectrum, like
practically all computers, takes its orders from you when you type
them on the keyboard. You will also have found that an order is
obeyed when the ENTER key is pressed. You will have used the
command NEW which clears out a program from the memory; and
LIST which prints your program instructions on to the screen. Now
there are two ways in which you can use a computer. One way is called
direct mode. Direct mode means that you type a command, press
ENTER, and the command is carried out at once. This can be useful,
but the more important way of using a computer is in what is called
program mode. In program mode the computer is issued with a set of
instructions, with a guide to the order in which they are to be carried
out. A set of instructions like this is called a program.

The difference is important, because the instructions of a program
can be repeated as many times as you like with very little effort on
your part. A direct command, by contrast, will be repeated only if you
type the whole command again, and then press ENTER.

Let’s take a look at the difference. If you want the computer to
carry out the direct command to add two numbers, 1.6 and 3.2, then
you have to type:

PRINT 1.6 + 3.2 (and then press ENTER)

You have to start with PRINT because a computer is a dumb
machine, and it obeys only a few set instructions. Unless you use the
word PRINT, the computer has no way of telling that what you want
is to see the answer on the screen. It doesn’t recognise instructions like
‘GIVE ME’ or ‘WHAT IS’ - only a few words that we call its reserved
words or instruction words. PRINT is one of these words. The
PRINT instruction is obtained by pressing the ‘P’ key when the

—— ——

TR

14 The ZX Spectrum

flashing letter is a ‘K. Remember to press the SYM BOL SHIFT key
to obtain the decimal point and the + symbols. When you press
ENTER after typing PRINT 1.6 + 3.2, the screen shows the answer,
4.8, at the top, and the message P OK. §:1’ at the bottom. Once this
commdnd has been carried out, however, it’s finished.

A program does not work in the same way. A program is typed in,
but the instructions of the program are not carried out when you
press ENTER. Instead, the instructions are stored in the memory,
ready to be carried out as and when you want. The computer needs
some way of recognising the difference between your commands and
your program instructions. This is done by starting each program
instruction with a positive whole number which is called a line
number. This is why you can’t expect the computer to understand an
instruction like 5.6 + 3= ; it takes the 5 as being a line number, and
the rest doesn’t make sense.

Let’s start programming, then, with the arithmetic actions of add,
subtract, multiply and divide. Computers aren’t used all that much
for calculation, but it’s usefu] to beable to carry out calculations now
and again. Figure 2.1 shows a four-line program which will print
some arithmetic results,

18 PRINT "“B.4+3.2= *
28 PRINT 1. TEd 2=

38 PRINT "12.6,3%4= 973
4@ PRINT "9.7-6.8= ": 5.

Fig. 2.1. A four-line arithmetic program.

Take a close look at this, because there's a lot to get used to in these
four lines. To start with, the line numbersare 10,20, 30 40 rather than
1,2,3,4. This is to allow space for second thoughts. If you decide that
you want to have another instruction between line 1) and line 20,
then you can type the line number 15, or 11 or 12 or any other whole
number between 1§) and 20, and follow it with your new instruction,
Even though you have entered this line out of order, the computer
will automatically place it in order between lines 1) and 29. If you
number your lines 1,2,3 then there’s no room for these second
thoughts.

The next thing to notice is how the number zero is slashed across.
This is to distinguish it from the letter O. The computer simply won’t
accept the @ in place of O, nor the O in place of §}, and the slashing
makes this difference more obvious Lo you, so that you are less likely

D —

e ——

Screen Messages 18

to make mistakes. Some magazines, unfortunately, reprint computer
programs with the slashmarks removed, so that it’s Very easy to make
mistakes.

again, we can’t use the X that you might normally use for writing
multiplication because X’ is a letter. There’s no divide sign on the
keyboard, so the Spectrum, like all other small computers, uses the
backslash (/) sign in its place,

So far, so good. The program is entered by typing it, just as you see
it. You don’t need to leave any space between the line number and the
P of PRINT, because the Spectrum will put one in for you. You will

the pregram is actually in the memory, the other is how to make the
machine carry out the instructions of the program.

The first part is dealt with using the command LIST that you know
already. You can use CLS (on the V key), followed by pressing
ENTER to wipe the screen first if you like, then type LIST and press
the ENTER key. When you pressthe ENTER key,and not until, your
Program will be listed on the screen. You will then see how the
computer has printed the items of the program on the screen, with
Spaces between the line numbers and the instructions. To make the

was not between quotes is worked out, so that the first line, for

5.4+3.2=8.6

Now there’s nothing automatic about this. If you type a new line;
15 PRINT “5,443 2= 24D

16 The ZX Spectrum

then you'll get the daft reply, when you RUN this, of:
5.4+3.2=4

The computer does as it's told and that’s what you told it to do.
Screwdrivers haven’t taken over the world, so why should computers!

This is a good point also to take notice of something else. The line
15 that you added has been fitted into place between lines 1§ and 2) -
LIST if you don’t believe it. No matter in what order you type the
lines of your program, the computer will sort them into order of
ascending line number for you. Note also that the spaces in the
program of Fig. 2.1 between the = and the ™ are useful - just see what
happens if you miss them out!

With all of this accumulated wisdom behind us, we can now start to
look at some other printing actions. PRINT, as far as the Spectrum is
concerned, always means print on to the TV screen. For activating
the ZX printer, there’s a separate instruction LPRINT (and LLIST
for program listings). You must not use these instructions unless you
have a printer connected and switched on.

Now try the program in Fig. 2.2. Youcan try typing the lines in any

1@ PRINT "This is Spectrum"™
28 PRINT "Jour entry";
3@ PRINT ” to the world of com

40 PRINT °°
5@ PRINT " _ in colour.”

Fig. 2.2. Using the PRINT instruction to place words on the screen.

order that you like, to establish the point that they will be in line
number order when you list the program. When you RUN the
program, the words - This is Spectrum — appear on one line, and
the words — your entry to the world of computing - on the next
line. This is because the instruction PRINT doesn’t just mean ‘print
on the screen’. It also means ‘take a new line’, and start at the left-hand
side!

Now this isn’t always convenient, and we can change the action by
using punctuation marks that we call print modifiers. In line 20, for
example, the semicolon at the end of the line will cause printing to
continue on the same line. You have to be careful how you do this,
because you will jam words together if you don’t leave a space, and
you also have to watch how words are split up at theend of a line. The
Spectrum allows you 32 characters in each printed line, which is why

Screen Messages 17

part of the word ‘computing’ has been printed one line down. Line
49 shows a way of arranging typing more neatly. The apostrophe
mark (") causes printing to skip one line. We'll look at examples of this
later being used to split up long phrases so that they fit more neatly on
the screen. For the moment, though, we have another printing trick
to learn.

Start this time by acquiring a new habit. Type NEW (on the ‘A’
key) and then press the ENTER key. This clears the old program out.
If you don’t do this, there’s a chance that you will find lines of old
programs getting in the way of new ones. Each time you type a line,
you delete any line that had the same line number in an older
program, but if there is a line number that you don’t use in the new
program it will remain stored.

Rows and columns

Neat printing is a matter of arranging your words and numbers into
rows and columns, so we'll take a closer look at this particular art
now. Figure 2.3 shows one way of arranging columns. Line 1§ is a

1@ PRINT “Number™,”"Cotlcur"

20 PRINT "@" ,"bltack"”

3@ PRINT 1" ,"8BLue"

4@ PRINT “2","Red","3","Purple

"

Fig. 2.3, How the comma causes words to be placed in columns.

PRINT instruction that acts on the words ‘Number’ and ‘Colour’.
Note that you get the capital letters for N and C by pressing CAPS
SHIFT at the same time as you press the letter key, just as on a
typewriter. When these appear on the screen, though, they appear
spaced out just as if the screen had been divided into two columns.
The mark which causes this effect is the comma, and the action is
completely automatic. As line 4) shows, you can't get more than two
columns. Anything that you try to get into a third column will
actually appear on the first column of the next line down. The action
works for numbers as well as for words, as lines 2) to 40 illustrate.
When words are being printed in this way, though, you have to
remember that the commas must be placed outside the quotes. Any
commas that are placed inside the quotes will be printed just as they
are and won't cause any spacing effect. You will also find that if you
attempt to put into columns something that is too large to fit, the long

18 The ZX Spectrum

phrases will spill over to the next column, and the next item to be
printed will be at the start of the next column along.

Commas are useful when we want a simple way of creating two
columns. A much more flexible method of placing words along a line
exists, however, and is illustrated in Fig. 2.4, It uses the instruction

1® PRINT ;"Side"
20 PRINT TAB &;"tabs"
3@ FPRINT THAB 28; "tab2e"
4@ FRINT TRE 25;''side"
e S@ PRINT TAE 10; “ten";TRB 20; 2

Fig. 2.4. Tabulation in a program.

word TAB, which has to be followed by a number. The command
word TAB is obtained by pressing both of the SHIFT keys, releasing
them, and then pressing the ‘P’ key. The flashing letter changes to an
‘E’ when you have pressed both SHIFT keys, and this is the method
that you have to use to enter any of the words or symbols that are
printed in green above the keys. To see what TAB does, imagine the
line divided into 32 portions, equally spaced, and numbered from {) to
31. Thus TAB) means the position at the left-hand side of the line,
and TAB 31 means the position at the right-hand side of the line.
Figure 2.4 illustrates the appearance of words that are typed at
different TAB positions. Note that we must use TAB only following a
PRINT instruction, but we can use more than one TAB following a
PRINT instruction, as line 5¢ demonstrates.

The use of tabulation, as this is called, can make the appearance of
printing on the screen much smarter, as Fig. 2.5 illustrates. In this

1@ CLS E’B INT TABR 13; “TITLE"

20 PRINT
3@ PRINT TRE 2;"Text Looks nea

Fig. 2.5. Using TAB to make printing look neater.

example, the word TITLE has been centred on its line by using TAB
13. Line 1§ contains a novelty, though, in the form of two
instructions in one line. The instructions are separated by a colon (3),
and you can, if you like, have several instructions following one line
number in this way, even if they require several screen lines to type. In
a ‘multistatement’ line of this type, the Spectrum will deal with the
different instructions in a left-to-right order. Getting back to printing

Screen Messages 19

the word centred on the line, however, the TAB number is found by
using a formula that has been known to typists for generations - it’s
illustrated in Fig. 2.6. Later on, we'll look at ways of carrying out this

Spectrum Independent
20 characters
(count space between m and I)
32 characters per line
32-20=12
Yeof 12=6

so use TAB 6
PRINTTAB 6; "SPECTRUM INDEPENDENT"

Fig. 2.6. The formula for centring a title.

calculation automatically, so that you can print any phrase centred in
a line without having to count the letters and spaces for yourself. One
point that we haven't illustrated yet is that the quantity that follows a
TAB need not be a number - it can be a letter that represents a
number. We'll come back to that point in the next chapter.

Take a look now at the use of TAB for forming columns on the
screen. Figure 2.7 illustrates different TAB positions being used to
produce four columns. It also shows how we have to use semicolons

. A@ CLS : PRINT TAB 1Z; “COLUMNS

20 _PRINT TAB 7;"R“;TRE 14; “B";
TAB 21; "C";TAB 2&; “ph

30 PRINT ‘. PRINT TRB 7; 1;TRE
14;2; TAB 21;3;TAE 284

Fig. 2.7. Using TAB to produce columns.

as separators - you must not omit the semicolon that follows the TAB
number. If you press ENTER, having forgotten the semicolon, the
Spectrum will remind you of the error by flashing a question mark in
the place where you should have put the semicolon. You can get back
to the place by deleting using CAPS SHIFT and the §§ key. An
alternative is to use the CAPS SHIFT with the left-arrow key (the ‘5’
key) - this method is not fully described in the manual.
Meantime, there's another very important print modifier to look
at. The AT word on the keyboard is used to allow text (numbers,
letters, words) to be placed anywhere on the screen. For the purpose
of using AT, we imagine the screen divided into a grid of 32 divisions
across and 22 lines down, as Fig. 2.8 shows. Instead of the single
number which we use to follow TAB, AT is followed by two numbers.
The first of these numbers is the line number, counting from the top
with the top line numbered zero. The second number is the same

20 The ZX Spectrum

—
VODI OGN -

ot

—
(=]

13

i b T T R o) Fh

=

(Bottom lines 22, 23, are reserved for inputs, remember.

The axam le shows the result of the command
AT 9, 6; "Sinclair Rules, O.K?

Fig. 2.8. The PRINT AT grid.
number as we would use for a TAB, the number of spaces along the

line, counting the left-hand side as position zero.
Figure 2.9 shows how PRINT AT is used. You must separate the

10 CLS : PRINT AT i ek ey s el S

2@ PRINT AT =20, 13,'?;rst"
3@ PRINT AT 18,13;"secand"”
4@ PRINT AT 1,8&;"third”,;AT 1,2

&, "fFourth"
Fig. 2.9. How PRINT AT is used to place words anywhere on the screen.

numbers with a comma, and you have to place a semicolon between
the last number and the item that you want to print. Youcan use more
than one AT following a PRINT in a line. This s illustrated in line 4
- you have to remember to separate the next AT by using a
semicolon. The effect of PRINT AT is to allow you to print items
wherever you want, as Fig. 2.9 shows. You don’t have to print in the
order of left to right or top to bottom either, because PRINT AT
allows you complete freedom to print wherever you want. If your

Screen Messages 21

choice of PRINT AT position places a new word over an old one,
then the new letters will simply replace the old ones.

As a final point, we saw earlier that the Spectrum will print small
(lower-case) letters normally and will print capitals (upper-case) if
you type a letter while you are holding down the CAPS SHIFT key.
You can type in all capitals by using the CAPS LOCK action, which
is obtained by pressing the CAPS SHIFT key along with the 2’ key.
This works just like the SHIFT LOCK of a typewriter, causing all the
letters that you type to be in capitals. This applies only to letters,
however, when the flashing cursor is an ‘L’. The other actions of the
keys are unaffected.

Chapter 3
‘ Spice Of Life?

So far, our computing has been confined to printing numbers and
words on the screen. That’s one of the main aims of computing, but
we have to look now at some of the actions that go on before anything
is printed. One of these is called assignment.

Take a look at the program in Fig. 3.1. Type it in, run it, and

10 CLS

2@ LET x=15 STy

3@ PRINT “2 times “;x;"“ is “;@
X

4@ LET x=20

S@ FRINT "x is _now ";X e

6@ PRINT “and 2 times “;X;" is

Tiasx

4

Fig. 3.1, Introducing the use of a variable name.

contrast what you see on the screen with what appears in the
program. The first line that is printed is line 3). What appears on the
screen is:

2 times 15 is 3¢

but the numbers 15 and 30 don’t appear in line 39! This is because of
the way we have used the letter x as a kind of code for the number 15.
The official name for this type of code is variable name.

Line 20 assigns the variable name x, giving it the value of 15.
‘Assigns’ means that wherever we use x, not enclosed by quotes, the
computer will operate with the number 15. Since x is a single
character and 15 has two digits, that’sa saving of space. It would have
been an even greater saving if we had assigned x differently, perhaps
as LET x=2174.3256, for example. Line 3¢ then proves that x is
taken to be 15, because wherever x appears, not between quotes, 15is
printed, and the ‘expression’ 2*x is printed as 3. We’re not stuck

Spice Of Life? 23

with x as representing 15 for ever, though. Line 40 assigns x as being
20, and lines 50 and 60 prove that this change has been made.
That's why we call x a ‘variable’ - we can vary whatever it is we
want it to represent. Until we do change it, though, x stays assigned.
Even after you have run the program of Fig. 3.1, providing you
haven't added new lines or deleted any part of it, you can type PRINT
X, and pressing ENTER will show the value of x on the screen.
This very useful way to handle numbers in code form can use a
‘name’ which must start with a letter. You canadd to that more letters
or numbers, so that n,r2d2 or number, for instance, are all names
that you can use for number variables, and each can be assigned to a
different number. Just to make it even more useful, you can use code
‘names’ to represent words and phrases also. The difference is that
these ‘names’ must consist of one letter only, and you have to add a
dollar sign ($) to the variable name. If n is a variable name for a
number, then n$ (pronounced ‘en-string’ or ‘en-dollar’) is a variable
name for a word or phrase. The computer treats these two, n and n§,
as being entirely separate and different.
Figure 3.2 illustrates *string variables’, meaning the use of variable
names for words and phrases. Lines 1 and 2f carry out the
1@ CLS : LET s%="Spectrum”
20 LET a%="The ZX "
3@ PRINT AT 2,13;a%

4@ PRINT RT 4,12;s5%
5@ PRINT "Thif is ";s$

Fig. 3.2. Using string variables. These are distinguished by. the dollar sign.

assignment operations, and lines 3¢ and 50 show how these variable
names can be used. Notice that you can mix a variable name, which
doesn’t need quotes around it, with ordinary text, which must be
surrounded by quotes.

Figure 3.3 shows another example of the use of variable names.
This time the variable names are contrasted - the number uses a long
variable name, and the string uses the compulsory single letter. There
wouldn’t be much point in printings messages in this way if you
wanted the message once only, but when you continually use a phrase

1@ CLS : LET pettucash=234
2@ LET agf="Jones account®

3@ PRINT a%;'" petty cash is £
;prettycash

Fig. 3.3. String and number variables being used together,

24 The ZX Spectrum

in a program, this is one method of programming it so that you don’t
have to keep typingit! Another point about variables is that the use of
a long variable name can make it easier for you to remember what it is
that a name is supposed to represent.

String along with me

Because the name of a string variable is marked by the use of the §
sign, a variable like a§ is not confused with a number variable like a.
We can, in fact, use both on the same program knowing that the
computer at least will not be confused. Figure 3.4 illustrates that the
difference is a bit more than skin deep, though. Lines 1§ and 20 assign

e -CLS = LET /[a=32: LET beS7
=8 LET a%="12";: LET b&="3.7"

4@ PRINT ag,bs
5@ FPRINT “axb is " ;aib

bLE? PRINT “"but ag%xb% is impossi
e.II

Fig. 3.4. Strings and numbers might look alike, but they are different!

number variables a and b, and string variables a$ and b$. When these
variables are printed in lines 30 and 44, you can’t tell the difference
between a and a$ or between b and b$. The difference appears,
however, in line 6f). It can multiply two number variables as we’ve
done in line Sﬂ, because numbers can be multiplied, but it can’t
multiply string variables. The reason is simple. A string variable can
be anything. We have assigned a$ as ‘12’, but we could just as easily
have assigned it as ‘12 LAVENDER WAY’. You can multiply 12 by
3.7, but you can’t multiply 12 LAVENDER WAY by 3 ORCHID
AVENUE. The computer therefore refuses to carry out multiplica-
tion, division, addition, subtraction or any other arithmetic
operation on strings. Attempting to program a forbidden operation
in line 6f) would cause an error message. The Spectrum catches errors
like this before you can enter them into the memory, and you will see
the question mark flashing just after the first string sign if you attempt
to enter:

6f PRINT a$*b$

The operation that we are calling for can be done on numbers, but
we have strings here. Later on, we'll see that there are operations that
we can carry out on strings that we can’t carry out on numbers, and

Spice Of Life? 25

attempts to do these operations on numbers will also cause an error
message. The difference is an important one. The computer stores
numbers in a way that is quite different from the way it stores strings.
The different methods are intended to make the use of arithmetic
simple for number variables (for the computer, that is), and to make
other operations simple for strings. Let's face it, it's wonderful, but
it’s only a machine!

There is one operation, that looks rather like arithmetic being
carried out on strings. It uses the + sign, but it isn’t addition in the
sense of adding numbers, Figure 3.5 illustrates this action of joining
strings, which is often called concatenation. This is nothing like the

i@ CLS s LET ag$="The ZX"
20 :-" SPECTRUM"

3@ LET CH=a%+b®
49 PRINT <&

Fig. 3.5. Concatenating or joining strings.

action of arithmetic, as you'll see if you use numbers in place of the
names. Concatenation is a very useful way of obtaining strings which
otherwise would need rather a lot of typing. Take a look at line 1§ of
Fig. 3.6. This defines string a$ as a set of characters which can be used
as a ‘frame’ around a title. There is a piece of new programming here

18 CLLS = LET agk=" b
28 LET s::"SPECTRan
30 LET c%=af+s5+a%

4@ PRINT AT 2,9;C

Fig. 3.6. Using concatenation to make a frame for a title.

in the way that we produce the shapes. These shapes are called
graphics, and they will be produced after you have pressed the CAPS
SHIFT and the ‘9’ key together. Having done this, press the ‘6’ key
five times, and you will have the set of chequers. Go back to normal
programming by pressing CAPS SHIFT and ‘9’ again, so that you
can put in the final quotes. The title is defined in line 20 as
SPECTRUM. Line 4§ then prints a concatenated string. This has
needed less typing than if you had to type all the characters between
the quotes. It also allows you to rearrange the frames as you please.
You can, for example, define another set of graphics shapes as b$,
and then use:

b$ + a$ + s§ + a$ + b§

next time you print the title.

26 The ZX Spectrum

What goes in ...

So far, everything that has been printed on the screen by a program
has had to be placed in the program before it is run. Wedon't have to
be stuck with restrictions like this, however, because the computer
allows us another way of putting information, number or name, into
a program while it is running. A step of this type is called an INPUT
and the BASIC instruction word that is used to cause this to happen is
also INPUT. Logically enough, it's on the ‘I’ key of your Spectrum.

Figure 3.7 illustrates this with a program that prints your name.

18 CLS ; INPUT “"Uhat i= your n
ame?"',; n$
L_%‘BlFRINT ““n%; ", this is your
ifel!™

Fig. 3.7. Using the INPUT instruction. The name that you type appears on the
bottom line,

Now I don’t know your name, so I can't put it into the program
beforehand. What happens when you run this is that the words:

What is your name?

are printed on the last line of the screen. The computer is now waiting
for you to type something, and then press ENTER. Until the ENTER
key is pressed, the program will hang up at line 1§, waiting for you. If
you're honest, you will type your own name and then press ENTER.
You don’t have to put quotes around your name, simply typeitinthe
form that you want to see printed. When you press ENTER, your
name is assigned to the variable n$. The program can then continue,
so that line 20 then prints the famous phrase with your name at the
start. Take a close look at this - the words that you want to see printed
must be enclosed by quotes, and you have to separate the words from
the variable name by using a semicolon. If you try to ignore these
rules, the Spectrum simply won’t allow you to enter the line.

You could, of course, have answered MICKEY MOUSE or
DONALD DUCK or anything else that you pleased. The computer
has no way of knowing that either of these is not your true name. The
use of INPUT isn’t confined to a single name or number. We can use
INPUT with two or more variables, and we can mix variable types in
one INPUT line. Figure 3.8 illustrates an INPUT step which uses a
number variable age and a string variable n§. Now when the
computer comes to line 1), it will print the message and then wait for

Spice Of Life? 27

1@ CLS : INPUT “Name and age.,p
tease’” ;n%,age

2B FRINT “well ,Y;n&;™ .1 SUpp
ose you are”'"Lo0Kking forward o

being ";age+l

Fig. 3.8. Putting in two variables in one INPUT step.

you to enter both of these quantities, a name and then a number. You
have to be particular about how you enter these quantities. If you
type the name and then press ENTER, the computer will print its
flashing cursor (the ‘L’ shape) immediately following your name on
the bottom line of the screen. This is its way of indicating ‘more
needed’, and that’s a signal for you to type the number and then press
ENTER again. The name and number will be printed again in line 20.
There's one more thing to watch. When you use a number variable in
an INPUT step, then what you have typed when you press ENTER
must be a number. If you attempt to enter a string, the computer will
refuse to accept it, and you will see the error message ‘2 variable not
found, 19:2" appearing. This is the signal to you that something has
gone wrong - and the problem is in the second part of line 10. The
trouble with this is that it stops the program dead. Later on we'll look
at ways of avoiding this problem by making every entry a string entry.

How many beans make n?

The amount of computing that we have done so far should have
persuaded you that computers aren’t just about numbers. For some
applications, though, the ability to handle numbers is very important.
If you want to use your computer to solve scientific or engineering
problems, for example, then its ability to handle numbers will be very
much more important than if you bought it for games, for accounts or
for word processing. It's time, then, to take a very brief look at the
number abilities of the Spectrum. It is a brief look because we simply
don’t have space to explain what all the mathematical operations do.
In general, if you understand what a mathematical term like sin or ran
or exp means, then you will have no problems about using these
mathematical functions in your programs. If you don’t know what
these terms mean, then you can simply ignore the parts of this section
that mention them.

The simplest and most fundamental number action is counting.
Counting involves the ideas of incrementing if you are counting up
and decrementing if you are counting down. Incrementing a number

28 The ZX Spectrum

means adding | to it, decrementing means subtracting 1 from it.
These actions are programmed in a rather confusing-looking way in
BASIC, as Fig. 3.9 shows. Line 1f) sets the value of the variable

1@ CLS : LET no=12
20 PRINT "numbesr is= “;npo: LET

3@ PRINT "now it s ";no
4@ PRINT "its =square is “;no?

S@ PRINT "it&s =square sooct is
;S8R no

Fig. 3.9. Incrementing, using the equals sign to mean 'becomes’.

number as 12. This is printed in the first part of line 2§, but then the
second part of line 2§ ‘increments no’. This is done using the odd-
looking instruction: LET no = no + 1, meaning that the new value
that is assigned to no is | more than its previous value. The rest of the
program proves that this action of incrementing the value of no has
been carried out.

The use of the = sign to mean ‘becomes’ is something that you have
to get accustomed to. When the same variable name is used on each
side of the equality sign, this is the use that we are making of it. We
could equally well have a line:

LET no= no—1

This would have the effect of making the new value of ‘no’ one less
than the old value; ‘no’ has been decremented this time. We could also
use LET no = 2*no to produce a new value of ‘no’ equal to double the
old value, or LET no = no/3 to produce a new value of ‘no’ equal to
the old value divided by three.

Number functions

Figure 3.9 also illustrates some number functions. A number
function in this sense is an instruction which operates on a number to
produce another number. Line 2f has changed the value of ‘no’ to 13.
Line 4 then prints the value of ‘no’ squared, (meaning ‘no’ multiplied
by ‘no’). This is programmed by typing no 12, with the up-arrow on
the ‘H’ key. To get the square root of the number that has been
assigned to ‘no’, we use the instruction word SQR, which is above the
‘H’ key. Remember how to get one of these words that are printed in
green. You press both shift keys together, release them both then

Spice Of Life? 29

press the “H' key, in this example. An alternative is not.5, but ‘SQR
no’ is easier to type and remember. For other roots, like the cube root
you can use expressions like nof(1/3) and so on. Notice the use of the
brackets - you can’t leave them out, otherwise the computer will treat
the instruction as being no to the power of 1, then divided by 3, rather
than no to the power of one-third.

Figure 3.10 illustrates the various number functions that can be
used, with a brief explanation of what each one does. Some of these
actions will be of interest only if you want to program for scientific,
technical or statistical purposes. Others, however, are useful in
unexpected places, such as in graphics programs.

Function Followed by Action

ABS Number " Size, ignoring sign

ACS Number Arc (or inverse) cosine

ASN Number Arc (or inverse) sine

ATN Number Arc (or inverse) tangent

cos - Number Cosine of angle

EXP Number Exponential of number

FN Letter User-defined function

INT Number Rounds number down to whole number
LN Number Natural logarithm

P1 Nothing Gives value of pi

RND Nothing Random value between) and |
SGN Number Gives sign of number

SIN Number Gives sine of number

SQR Number Gives square root of number
TAN Number Gives tangent of number

Note: The trigonometrical functions, SIN,COS and TAN require a number
which is the angle in radians. (2 radians = 360°. Thus, | radian = 57.2958°)
The inverse functions ASN and ACS will accept numbers between—1 and +1
only.

Fig. 3.10. Spectrum number functions, with brief notes. Don’t worry if you don’t
know what some of these do. If you don’t know, you probably don‘t need them!

How precise?

One of the problems of small computers is precision of numbers. You

30 The ZX Spectrum

probably know that the fraction 1/3 cannot be expressed exactly asa
decimal. How near we can get to its true value depends on the number
of decimal places we are prepared to print, so that 0.33 is closer than
0.3, and 0.333 is closer still. The computer converts most of the
numbers it works with into the form of a fraction and a multiplier.
The fraction is not a decimal fraction but a special form called a
binary fraction, and this conversion is seldom exact. The conversion
is particularly awkward for numbers like 1, 10,19¢ and also .1, .1,
#P1; all the powers of ten, in fact. To avoid embarrassments like
printing 3 — 2 = .9999999, the computer will round numbers of this
type up or down as need -be before displaying them. You will
sometimes find, however, that a piece of arithmetic looks
spectacularly wrong, simply because it has used numbers that cannot
be represented exactly inside the computer. As an example, try:

PRINT 1¢—10¢*.1

and see what you get. This is not a fault of Spectrum, it’s a problem
that exists in all computers, and you have to find ways around it if you
want to work with precise numbers.

Chapter 4
Repeating The Process

Every computer is well equipped with instructions that will cause
repetition, and the Spectrum is no exception. We’ll start with the
simplest of these ‘repeater’ actions, GOTO. GOTO means exactly
what you would expect it to mean - go to another line number.
Normally a program is carried out by executing the instructions in
ascending order of line number. In plain language that means starting
at the lowest numbered line, working through the lines in order and
ending at the highest numbered line. Using GOTO can break this
arrangement, so that a line or a set of lines will be carried out in the
‘wrong’ order, or carried out over and over again.

Figure 4.1 shows an example of a very simple repetition or loop, as
we call it. Line 10 starts the program by assigning a variable n to have

18 LET n=1

28 PRINT “SPECTRUM-—-——-——-===———~—
~—-=-SPECTRUM"

38 PRINT n

4@ LET n=n+l1l: GO TO 28

S REM Press N key to stopwhan
you see the “scroll7?" question
appear, or use CAPS SHIFT and SP
ACE

Fig. 4.1. A very simple loop. You can ‘break’ this either by pressing 'n’ when the
‘scroll’ question is asked, or by pressing CAPS SHIFT and SPACE together.

the value of 1, Line 2 contains a simple PRINT instruction. When
line 2 has been carried out, the program moves on to lines 3() and 40,
which print the value of variable n, and increase it by one. The last
part of line 4 then instructs the program to go back to line 2 again.
This is a never-ending loop, and it will cause the screen to fill with the
word SPECTRUM and the number until you press the CAPS SHIFT

32 The ZX Spectrum

and SPACE keys to ‘break the loop’. Any loop that appears to be
running forever can normally be stopped by pressing these keys.
Now an uncontrolled loop like this is not exactly good to have, and
GOTO is a method of creating loops that we prefer not to use! We
don’t always have an alternative, but there is one - the FOR.. .NEXT
loop. As the name suggests, this makes use of two new instruction
words, FOR and NEXT. The instructions that are repeated are the
instructions that are placed between FOR and NEXT. Figure 4.2
illustrates a very simple example of the FOR...NEXT loop in action.

1@ CLS : FOR n=1 TO 1@
28 PRINT n;" Spectrum magic!
3@ NEXT n

Fig. 4.2. Using the FOR.. NEXT loop for a counted number of repetitions.

The line which contains FOR must also include a number variable
which is used for counting, and numbers which control the start of the
count and its end. In the example, n is the counter variable, and its
limit numbers are | and 1f). The NEXT nis in line 3¢, and so anything
between lines 1) and 3§ will be repeated.

As it happens, what lies between these lines is simply the PRINT
instruction, and the effect of the program will be to print the number and
‘Spectrum magic!” ten times. At the first pass through the loop, the value
of nis setto 1, and the phrase is printed. When the NEXT n instruction
is encountered, the computer increments the value of n, from 1 to 2 in
this case. It then checks to see if this value exceeds the limit of 19 that
has been set. If it doesn’t, then line 2§ is repeated, and this will
continue until the value of n exceeds 1) — we’ll look at that.point later.
The effect in this example is to cause ten repetitions.

Even at this stage it’s possible to see how useful this FOR...NEXT
loop can be, but there’s more to come. To start with, the loops that we
have looked at so far count upwards, incrementing the number
variable. We don’t always want this, and we can add the instruction
word STEP to the end of the FOR line to alter this change of variable
value. We could, for example, use a line like:

FOR n=1 TO 9 STEP 2

which would cause the values of n to change in the sequence 1,3,5,7.9.
When we don’t type STEP, the loop will always use increments of +1.
You don’t have to confine this action to single loops either. Figure 4.3

Repeating The Process 33

1@ CLS

2 FOR n=1@ T @ STEP -1

S8 PRINT RY 8,2;n;" seconds anp

counting.”

40 FDR J—l TO 25@8: NEXT

50 PRINT AT 1@, 12,"BLR
B ois now ";n

Fig. 4.3. A program that uses nested loops, with one loop inside another.

shows an example of what we call nested loops, meaning that one
loop is contained completely inside another one.

When loops are nested in this way, we can describe the loops as
inner and outer. The outer loop starts in line 2f), using variable n
which goes from 1 to § in value. Line 3¢ is part of this outer loop,
printing the value that the counter variable n has reached. Line 49,
however, is another loop. This must make use of a different variable
name, and it must start and finish again before the end of the outer
loop. We have used variable j, and we have put nothing between the
FOR part and the NEXT part to be carried out. All that this loop
does, then, is to waste time, making sure that there is some
measurable time between the actions in the main loop. The overall
effect, then, is to show a count-down on the screen, slowly eno ugh for
you to see the changes, and printing in the same place each time. Note
carefully that you have to end each loop correctly witha NEXT j and
a NEXT n, according to which is required.

Every now and again, when we are using loops, we find that we
need to use the value of n (or whatever name we have used) after the
loop has finished. It’s important to know what this will be, however,
and line 6f) brings it home to you. This reveals that the value of nis—1
in line 60, after completing the FOR n = 1 TO § STEP —1. If you
want to make use of the value of n, or whatever variable name you
have selected to use, you will have to remember that it will have
changed by one more step at the end of the loop.

One of the most valuable features of the FOR...NEXT loop,
however, is the way in which it can be used with number variables
instead of just numbers. Figure 4.4 illustrates this in a simple way.

1& CLS : LET a=2: LET b=8: LET
c=10G

20 FOR n=a TO b STEP b-,cC

3@ PRINT n: NEXT n

Fig. 4.4. A loop instruction that is formed with number variables.

34 The ZX Spectrum

The letters a, b and ¢ are assigned as numbers in the usual way in line
19, but they are then used in a FOR...NEXT loop in line 2¢. The
limits are set by a and b, step is obtained from an expression, b/c. The
rule is that if you have anything that represents a number or can be
worked out to give a number, then you can use it in a loop like this.

Decision steps

It’s time to see loops being used rather than just demonstrated. A
simple application is in totalling numbers. The action that we want is
that we enter numbers and the computer keeps a running total,
adding each number to the total of the numbers so far. From what we
have done up till now, it's easy to see how this could be done if we
wanted to use numbers in fixed quantities, like ten numbers in a set,
because this would mean starting with a FOR n=1TO 10 loop. The
trouble is, how many times would you want to have just ten numbers?
It would be a lot more convenient if we could stop the action simply
by signalling to the computer in some way, perhaps by entering a
value like) or 999. A value like this is called a terminator, something
that is obviously not one of the normal entries that we would use, but
just a signal. For a number-totalling program, a terminator of § is
very convenient, because if it gets added to the total it won’t make any
difference.

Figure 4.5, therefore, shows an example of this type of program in
action. We can't use a FOR...NEXT loop, because we don’t know in

_nci'g CLS : PRINT TAB 10 :"“Totat
: rll
20 FPRINT “"The pPirOogram #ill fin
d the totai""“of numbers that uo
U enter "‘“(using ENTER) untiti y
oU egnter~ " a TRro."

30 LET Total=0

4@ INPUT "Number . pleases “;n

5@ LET total=Total+n

6@ PRINT "Total so far is “;To

IF n<>® THEN GO TO 48
Fig. 4.5. A number-totalling program which can’t use FOR. .NEXT.

advance how many times we might want to go through the loop, so we
have to go back to using GOTO. This time, however, we’ll keep
GOTO under closer control. We make the total variable Total equal
to zero in line 3¢). Each time you type a number, then, in response to

Repeating The Process 35

the request in line 4¢), the number that you type is added to the total in
line 50, and line 6f) prints the value of the total so far. Line 7) controls
the loop, and the key to the control is the instruction word [F. IF is
used to make a test, and the test in line 70 is to see if the value of n is
not equal to zero. The odd-looking sign that is made by combining
the ‘less-than” and the ‘greater than’ signs, <<>>, is used to mean ‘not
equal’, so that the line reads: ‘If n is not equal to zero, then go to line
a0’

The effect, then, is that if the number which you have typed in line
4 was not a zero, line 7¢) will send the program back to repeat line 4.
This will continue until you do enter a zero. When this happens, the
test in line 7¢) fails (n is zero), and the program looks for a line 8f).
Since it can’t find one, it stops.

Now this allows you much more freedom than a FOR.. NEXT
loop, because you are not confined to a fixed number of repetitions.
The key to it is the use of IF to make a decision - and that’s what we
need to look at more closely now. We can make a number of types of
comparisons between number variables or numbers, and these are
listed in Fig. 4.6. The mathematical signs are used for convenience,

Sign Meaning

Equality (quantities must be identical)

Quantity on left is less than quantity on right

Quantity on left is greater than quantity on right

Quantity on left is less than or equal to quantity on right
Quantity on left is greater than or equal to quantity on right
Quantities are not equal

/'\\.//"I\V/\II

Vol

Fig. 4.6. The mathematical signs that are used for comparing numbers.

and you have to remember which way round the ‘greater than' and
‘less than® signs have to be. It's important to note that the equals sign
means ‘identical to’ when it is used in a test like this. If a is 5.9999999
and b is 6.00PPPPP then a test such as IF a = b will fail - a is not
identical to b, even though it is close enough to be equal as far as we
are concerned. The important point here is that the numbers we see
on the screen have been rounded, so that PRINT a in the example
above might give the result 6. The test, however, is made on the
numbers which have not been rounded.

36 The ZX Spectrum

Figure 4.7 shows another test - this time on string variables. The
instructions are in line 2¢); you are asked to press the y or n key. Line
3¢ gets your answer; you have to type y or n and then press ENTER.

1@ CLS
20 PRINT "PlLease press 4 orf [

key,then” " ENTER"
S0 INPUT

a%
40 EF ag:"g“ THEN PRINT “That'
s yes'": G TO 78

S50 IF af="n" THEMN PRINT “That'
s no*: GO TO 7O

68 PRINT "You cheated_tir4y agai
n": GO TOo 26

78 PRINT "That's it!"

Fig. 4.7. Testing string variables, in this example to find whether a replayisy or n.

The key that you have pressed has its value assigned to a§, so that a$
should be y or n. Lines 40 and 50 then analyse this result. If both tests
fail, though, the program will move from line 5 to line 69. Your
answer was not exactly y or n, so that you are asked to try again, and
the GOTO 20} at the end of line 6f) causes the program to repeat from
line 2p. This line 6) constitutes a mugtrap, a way of trapping
mistakes. Very often when you have a choice of answers, you want to
be sure that only certain replies are permitted. A mugtrap is a section
of program that is intended to deal with an incorrect entry. A good
mugtrap should show the user the error of his/her ways, and indicate
what answer or answers might be more acceptable. This is very often
important, because an incorrect entry in some types of program could
cause the program to stop with an error message showing. For
the skilled programmer (you, by the time you finish this book), this is
just a minor annoyance, but for the inexperienced user it can cause a
minor panic. A good program doesn’t allow any entries that would
cause the program to stop. Mugtraps are our method of ensuring this.

The test in this example is for identity. Only if a$ is absolutely
identical to y will the phrase “That’s yes’ be printed. If you typed a
space ahead of y, or a space following, or typed Y in place of y, then a$
will not be identical, and the test fails. Failing means that a$ is not
identical to y and everything that follows THEN in that line will be
ignored. It’s up to you to form these tests so that they behave in the
way that you want.

Just to emphasise the sort of power that these simple instructions
give you, Fig. 4.8 illustrates a very simple number-guessing game.
Line 1§ starts by clearing the screen, and the LET x =

Repeating The Process 37

1@ CLS : LET x=1+INT (RNDx1O®j:
LET score=0: FOR =1 TO 18

28 FPRINT "Guess the number. If
Luou get ““""near, I‘LL telil yoy!

¥ 30 PRINT "Score so far is “;sc
re

4@ INPUT "Guess b

S@ IF n=x THEN PRINT “"spot on!
*: GO TD BO

6@ IF ABS tn-x)<3 THEN PRINT -
CLose__it was ";Xx: L
! 7T NEXT J4: PRINT "anal SCore
is “,score: GO TO 9999

8@ LET score=score+2: GO TO 78

Q@ LET scovre=score+l: GO TO 78

Fig. 4.8. A simple number-guessing game which uses number comparisons.

I+INT(RND*1¢) step causes variable x to take a value that lies
between 1 and 1. We can’t predict what this value will be, because
RND means ‘select at random’ - a number is picked, somewhere in
the range of () to almost 1. Because RND produces a number that is
always a fraction, less than 1, multiplying RND by 1§ will give a
number that will be somewhere between) and 9.9999, and the INT of
this will be between @) and 9. Adding 1 gives a range of 1 to 1§, which is
what we want. Simple, really! In line 20, the instructions ask you to
guess the size of the number, with the difference that you don’t have
to find it exactly. You enter your number at line 4¢), and the tests are
made in lines 50 and 6f. If the number that you picked is identical to
the random number, then you get the ‘spot on!" message in line 50,
and the program moves to line 8¢ to add two points to your score.
The less obvious test is in line 6f). The expression n—x is the difference
between your guess, n, and the number x. If your guess is larger than
the number, then n—x is a positive number. If your guess is less than x,
then n—x is a negative number. The effect of ABS. however, is to
make any number positive, so that if x were 5 and you guessed 6 or 4,
then ABS (n—x) would come to I. If you get a difference of | or 2 (less
than 3), the message in line 6 is printed. The program then shifts to
line 90 to present you with one point. If youdon’t get anywhere near,
the program repeats because of its NEXT jin line 7. It's very simple,
but quite effective.

Reading the data

There’s yet another way of getting data into a program while it 1s

38 The ZX Spectrum

running. This one involves reading items from a list, and it uses two
instruction words READ and DATA. The word READ causes the
program to select an item from the list. The list is marked by starting
each line of the list with the word DATA. The items of the list can be
separated by commas. Each time an item is read from such a list, a
‘pointer’ is altered so that the next time an item is needed, it will be the
next item on the list. The READ...DATA instructions really come
into their own when you have a long list of items that are read by
repeating a READ step.
The program in Fig. 4.9 illustrates how we can use these

instructions. Line 2() starts a loop which will select ten items. In line

1@ CLS : PRINT “"number™,“root"

2@ FOR n=1 TCQ i@

3@ RERD number

4@ PRINT number ,S8R number

5@ NEXT n

6@ DRATA 23,14 ,16,56,2 2
42.5@ 2% ‘. ‘ ‘ 214,292,833,

Fig. 4.9. Using the READ DATA instruction.

3¢, the instruction ‘READ number’ means that a number will be
selected from a list, and assigned to the variable name ‘number’. The
list of numbers is in line 6@). It is marked by the word DATA, and the
computer will completely ignore this line until it comes to the READ
part of the instruction. As each number is read in turn, it and its square
root is printed in line 4¢), and the next number is read. We have to be
careful to match the number of items that follow DATA with the
number of times we use the loop. If we tryto READ eleven items, and
have provided only ten, then an error message will put a stop to the
program for us. We also have to match the data items with the
variable names that we use for them. We can read a number item and
assign it to a string variable name, but we can’t read a string item and
assign it to a number variable. We can, however, use several lines of
DATA, and the computer will read the items in order, starting at the
lowest numbered line.

The benefits of READ...DATA are not confined to numbers
alone. Figure 4.10 illustrates a use of READ and DATA with strings.
The aim of the program is to find out how much your shopping costs!
It's based on the totalling program that we looked at earlier, with the
difference that a READ takes place in line 2(). This reads an item
from the list in line 10P and tests to find-if the item is called ‘end’.
If the item is not ‘end’ then line 3 prints its name, and calls for

Repeating The Process 39

LS : LET total=0
READ a%: IF as="end" THEN G
Ta

FRINT '"How many ",;a%;"” do Y
ou Want?" " "...and at what price?

a)

4@ INRUT “number “;number: INP
UT "“cgost '“:cost
S8 LET total—total+number*coat

“*Tptal cost willt be "

“"apples","bananas,"pe
s ,"peanuis” ,"oranges","Lenons
",'graperru:.ts“ “end®

Fig. 4.10. Strings can be used in a DATA line, but remember to place quotes
around each string.

the number and price to be entered in line 4. The program loops
round, calculating the total cost in line 5 each time, until the ‘end’
item is read. When this happens, line 7f) gives the total cost, and the
program ends. There’s one more twist to the use of the READ and
DATA instructions, in the form of RESTORE, but we'll reserve that
one for the next chapter,

Single key reply

So far, we have been putting in y or n replies with the use of INPUT,
which means pressing the key and then pressing ENTER. This has the
advantage of giving you time for second thoughts, because you can
delete what you have typed and type a new letter before you press
ENTER. For snappier replies, however, there is an alternative in the
form of INKEYS. INKEYS is an instruction that carries out a check
of the keyboard to find if a key is pressed. This checking action is very
fast, and normally the only way that we can make use of it is by
placing the INKEYS instruction in the loop which will repeat until a
key is pressed. Figure 4.11 shows such a loop. The INKEY$
1@ CLS
20 PRINT "Press any key to pro
ceed"”
38 LET K$=INKEY%: IF k3$="" OR
Ls=CHR% 13 THEN GO TO 3@
4@ PRINT “the key was “; k%
S0 REM saowme kewys do not give &

character on the screen. The EN
TER key has been e€xcluded.

Fig. 4.11. Using INKEY$ for a single-key reply.

40 The ZX Spectrum

instruction will produce a string quantity when any key is pressed, so
we assign INKEYS to a string variable, k$. In this way, when any key
is pressed, the quantity that it represents will be assigned to k$, and if
k$ is a ‘blank string’, meaning that no key was pressed, the line loops
back to its start again. Note how we indicate a blank string by using
two quotes with no space between them. We also have to reject the
action of the ENTER key itself, however, and this is done by the
second test, comparing k$ with CHRS 13. Failing to do this can make
the action erratic — I'll explain the use of CHRS$ later, so trust me!

Subroutines and menus

A subroutine is a section of program which can be inserted anywhere
that you like in a longer program. A subroutine is inserted by typing
the instruction word GOSUB, followed by the line number in which
the subroutine starts. When your program comes to this instruction,
it will jump to the line number that follows GOSUB, just as if you had
used GOTO. Unlike GOTO, however, GOSUB offers an automatic
return. The word RETURN is used at the end of the subroutine lines,
and it will cause the program to return to the point that immediately
follows the GOSUB. Figure 4.12 illustrates this. When the program
CLS : PRINT "This is a ';
E‘B GO SUbB ieas
3@ PRINT "“subrouvtine'™” ”
4@ PRINT "Red Light and greern
Li?hth?ate‘": GO SuB 18@@: PRINT
" i g - AL

5@ PRINT "wasps have ";: GO 5U
E leaa: PRINT “"and black stripes

6@ GO TO 9999
12088 FPRINT “"yeltow ";
i121@ RETURN

Fig. 4.12. Using a subroutine - this is the key to more advanced programming.

runs, line 1§ prints a phrase, with the semicolon used to prevent a new
line from being selected. The GOSUB 1009 in line 2) then causes the
word ‘vellow’ to be printed, but the RETURN in line 101§ will send
the program back to line 3@, the instruction that immediately follows
the first GOSUB 1§@@. This action will also occur even when the
GOSUB is part of a multistatement line, as lines 40 and 50
demonstrate. The GOSUB 10@§ will cause the word yellow to be
printed, but the return is to the PRINT instruction that follows

Repeating The Process 41

GOSUB 1000 in line 50, it doesn’t jump to line 6. This example is, of
course, a yellow subroutine. One more point is important. We should
not allow the subroutine to run except when it has been requested by
the use of GOSUB. This is done by putting GOTO 9999 at the end of
the main section of the program, ahead of any subroutines that we
use. GOTO 9999 is the Spectrum equivalent of an ‘end’ instruction,
because the Spectrum does not allow you to use any line number
greater than this.

Now to see one of the most useful applications of subroutines, we
have to hark back to choices. A choice of two items, such as in Fig,
4.7, isn’t exactly generous. We can extend the choice by a program
routine that is called a menu. A menu is a list of choices, usually of
program actions. By picking one of these choices,we can cause a
section of the program to be run. One way of making the choice is by
numbering the menu items, and typing the number of the one that
you want to use. We could use a set of lines such as:

IF K =1 THEN 100¢
IF K = 2 THEN 2009

and so on. Figure 4.13 shows an improvement on this one, making
use of subroutines. It's a feature of Spectrum that we can use an

1@ CLS : PRINT AT 1,14, "HEHNU"
2@ PRINT °**
_'3@ FPRINT "1.Entler program nage

48 PRINT “"2.enter amount ofF RE
M used."

5@ PRINT "3.List all programs.

58 PRINT "4.List programs belo
w a """ specified size."

b?a ERINT “"PlLease select by nu
m Er -

8@ LET k$=INKEYS: IF k%="" OR
k$=CHRS$ 13 THEN GO TO 8@

98 LET k=URAL kK%: IF K>+ OR k¢
THEN PRINT "Incorrect selection
;Please try again.”: GO TO 78
108 GO SUB £ *+1@2@
i1le GO TO S9ag
&BGB PRINT "name section'": RETUR

202@ PRINT "RAM section': RETURN

JBe2 PRINT "List all": RETW
4002 FPRINT "Select tist': RFE%#UF?N

Fig. 4.13. A menu choice that makes use of subroutines,

42 The ZX Spectrum

expression, like ‘a+1¢’ or *25*a—1¢’ as the line number following a
GOSUB. The menu prints the choices and allocates each one to a
number. The INKEYS$ routine in line 80 waits for you to press a key -
but the value of k$ that it obtains is a string value. This string value is
converted into a number value in line 99, but using VAL. VAL
applied to any string will extract a number value, if there is one
contained in the string. This number is allocated to variable k, and
used to select the GOSUB lines in line 1§9. I haven’t written out the
GOSUB lines in full, because it’s just too much typing for the sake of a
demonstration. The PRINT lines, however, prove that the subroutine
action has been carried out. Notice how the value of k is tested in line
99 - it's another example of mugtrapping in use.

Flasher’s joy

The trouble with INKEYS is that it doesn’t remind you that it’s in use
~ there’s no question mark printed as there is when you use INPUT.,
The program of Fig. 4.14 shows a useful variation on INKEYS for use
in menus. The subroutine in lines 10P to 194 causes an asterisk to
flash while you are thinking about which key to press. The asterisk is

i@ CLS
2@ PRINT "Choose 1 of 2 plLeasse

30 GO 5UBF 1066

4@ LET a=VURAL k&

E0 FRINT “"Choose 4 Oof n plaase
*: PAUSE 10: LET k&%=""

68 GO SUB 1088

7@ LET b%=k$ =

88 FRINT ' "“You chose “;a; an
d ", b%
g@ GO TO S939
1088 LET kKk&s=INRKEYS$
191@ IF k&<»"" AND KE<>CHRS$ 13 T
HEN RETURN
190280 PRINT AT 5,1;"*';: PAUSE 19
1838 PRINT AT 5,1, "“;: PRAUSE 16
1040 GO TO 1000

Fig. 4.14. Using an INKEY$ input along with a flashing asterisk.

flashed by alternately printing the asterisk and the delete step.
Meantime, make friends with subroutines. They are not just a useful
way of obtaining an action at several points in a program, they are an
indispensable aid to program planning, of which there’s much more
in Chapter 6.

Chapter b
String Along With Spectrum

In Chapter 3, we took a fairly brief look at number functions. If
numbers turn you on, that’s fine, but string functions are in many
ways more interesting. What makes them that way is that the really
eye-catching and fascinating actions that the computer can carry out
are so often done using string functions. What’s a string function,
then? As far as we are concerned, a string function is any action that
we can carry out with strings. That definition doesn’t exactly help
you, I know, so let’s look at an example. Figure 5.1 shows a program
that prints ‘Spectrum tricks’ as a title. What makes it more eye-

CLS

LET t$="Spectrum tvyicks™
GO SUB 1000

FRINT

LET ts="gH¥U¥U¥¥UUUUVUV'
GO SUB 1000
GO _TO 2999

PRINT TAB (16—-LEN t%/2);t%
RETURN

Fig. 5.1. Introducing LEN, a member of the string function family.

catching is the fact that the words are printed with an underlining of
chequer shapes. This is your first introduction to the shapes, called
graphics, that the Spectrum can print in addition to numbers and
letters. We’ll go into more detail on these shapes in Chapter 7 but, for
the moment, we'll just use the shapes without much explanation. In
line 5¢, after putting in the line as far as the first quotes, you have to
‘enter graphics mode’. This is done by pressing the CAPS SHIFT and
the ‘9’ keys together. Y ou will see the cursor letterchangetoa‘G’,and any
number key that you use now will produce a shape - the pattern that is
printed on it. The chequer shape that we want is on the ‘6’ key, so
press this key fifteen times. Then press CAPS SHIFT and ‘9’ again to

44 The ZX Spectrum

leave graphics mode, and add the final quote mark in the usual way.

Now what this program does is to make use of a subroutine to print
‘Spectrum tricks’ and its underlining of chequers centred along each
line. The centring is carried out in line 1009, and this is the line that
introduces the first string function of this chapter. LEN is used to find
how many characters (letters, digits, punctuation marks or spaces)
exist in a string variable. LEN t$ will come up with the number of
characters in the variable t$, whatever t§ may be. What we’re doing in
line 1000, then, is to get the computer to carry out the actions that we
looked at in Chapter 2, for centring a phrase. LEN t$/2 will give the
number that is half the number of characters, and this is then
subtracted from 16 to give the correct TAB number. The TAB
instruction ignores fractions, so it doesn’t matter if t§ contains an odd
number of characters. Notice, by the way, that if we want anything
printed centred by this subroutine, we have to give it the variable
name of t§. This action is called ‘passing a variable’ to the subroutine,
and it’s something that we have to keep a careful eye on when we use
subroutines. You can't expect a subroutine that is written to print t$
centred to have any effect on a string called a$.

A slice in time

The next group of string operations that we're going to look at are
called slicing operations. The result of slicing a string is another
string, a piece copied from the longer string. String slicing is a way of
finding what letters or other characters are present at different places
in a string. All of that might not sound terribly interesting, so take a
look at Fig. 5.2. The string a$ is assigned in line 1§}, and sliced in line
1@ CLS ; LET ag="Special ten-—o

olilar rum”
o _?_g %ET bs=a3%(TO 4)+as5i2} 45512

3@ PRINT bS
Fig. 5.2, Spectrum string slicing.

20. What's printed in line 30 is the word Spectrum. Now how did this
happen? The instruction TO is used on the Spectrum, and means
‘copy part of a string’. As normally used, TO has to have a number
ahead of it, and another following it. The first of these numbers is the
position for starting the slice. This position is counted from the left-
hand side. The second number is the position at which the slice stops,

String Along With Spectrum 45

again counted from the left-hand side. If the first number is omitted,
we start slicing at the left-hand side. If the second number is omitted,
we stop slicing at the right-hand side. If that sounds complicated,
then let’s take a look at line 2(). The firstsliceisa$(TO4). We need to
specify what string we want to slice, so a$ has to appear. Starting with
TO means that we want to start the slice at the left-hand side of the
string, and the ‘4’ following the TO means that we stop at the fourth
character. The fourth character of a$ is the ‘c’ of ‘Special’, so that the
effect of a§(TO 4) is to copy ‘Spec’. The + sign then concatenates -
remember! - to the next string. This next one is simply a$(9), with no
TO. It simply means the ninth character, counting from the left,
which is ‘t’. Don’t forget that the space between ‘Special’ and ‘ten-
dollar’ counts as a character. Finally, we slice a$(2) TO), which
means that we take from character number 2§} to the end. That gives
us ‘rum’, and tacking this on to what we have already produces
‘Spectrum’. It’s a long road for a short-cut, but it illustrates how
simple this type of string-slicing action is. You will find this method
only on the ZX computers. Y ou may find, in programs that have been
written for other computers, instructions called LEFTS, RIGHTS$
and MIDS$. Figure 5.3 shows how these LEFT$, RIGHTS and MID$
instructions can be converted into the TO instructions. One of the

LEFTS$(AS.2) Slice A8 starting at the second letter. Spectrum equivalent
is A$(2 TO).

RIGHTS(A$,4) Slice A$ for four characters starting from the right-hand
side. Spectrum equivalent is AS(LEN A$—4 TO).

MIDS$(AS$,2,5) Slice A§ starting at the second character, and taking 5
characters. Spectrum equivalent is A$(2 TO 6).

Fig. 5.3. Converting the string slicing instructions of other computers to the
Spectrum form.

features of all of these string slicing instructions, incidentally, is that
we can use variable names or expressions in place of numbers.

Code and CHR$

Some of the most useful string operations make use of ASCII code
numbers. The letters stand for American Standard Code for
Information Interchange, and the ASCII (pronounced ‘Askey’) code

46 The ZX Spectrum

is one that is used by most computers. Figure 5.4 shows a printout of
the ASCII code numbers and the characters that they produce on my
ZX printer. The number characters of standard ASCII code extend
only from 32 to 127. We can find out the code for any letter by using

32 56 8 se P 124 h
a3 ! 57 9 81 8 188 i
34 v 58 82 R i@6 J
<5 B 59 4 83 S 187 Kk
36 & 5@ < 84 T i1es |
3? % 51 = 88 u i1@g m
38 & ea » 86 v 11@ n
39 ° 63 7 87 W 133 ©
40 I 64 @ 88 X i1i2 p
41) 65 A 89 v 113 9
42 * 66 B op z 1i4 r
43 + 67 C 91 £ i15 s
44 . &8 D S92 N 116 t
48 - 8689 E a3 1 117 v
45 e F 24 4+ 118 v
47 7 71 G as 119 w
48 @ 72 H a6 £ 120 x
49 1 73 I a7 a 121 w
54 2 74 J 98 b 122 =z
51 3 78 K 99 ¢ 123 <
52 4 76 L i@ d 124 |
S3 5 7 M 1@1 e 125 >
54 © 78 N 102 F i26 -~
55 7 79 0O 103 g 127 &

Fig. 5.4. The ASCI| code numbers that are used to represent string characters.

the function CODE, which is followed by a string character. The
result of CODE is a number, the ASCII code number for that
character. If you use CODE a$, where a$ is a collection of characters,
then you'll get the code for the first character only, because the action
of CODE includes rejecting more than one character. Figure 5.5
shows CODE in action. String variable a$ is assigned in line 1) and in

1@ CLS : LET ag="Spectrum"
2@ FOR j=1 TO LEN a%

3@ PRINT CODE as$(j);"” ";
4@ NEXT

Fig. 5.5. Using CODE to find an ASCII code number, Other computers use ASC
for this purpose.

line 20 a loop starts which will run through all the letters in a$. The
letters are picked out one by one, using the slicing action which
doesn’t need TO, and the ASCII code for each letter is found with
CODE. The space between quotes, along with the semicolons in line

String Along With Spectrum 47

3¢) makes sure that the codes are all printed on one line with a space
between the numbers. Simple, really.

CODE has an opposite function, CHR$. What follows CHRS has
to be a code number, and the result of the action is the character
whose code number is given. The instruction PRINT CHRS 65, for
example, will cause the letter A to appear on the screen, because 65 is
the ASCII code for the letter A. We can use this, just to give one
example, for hiding messages. Every now and again, it’s useful to be
able to hide a message in a program so thatit’s not obvious to anyone
who reads the listing. Using ASCII codes is not a particularly good
way of hiding a message from a skilled programmer, but for non-
skilled users it’s good enough. Figure 5.6 illustrates this use. Line 49
contains an INKEY$ loop to make the program wait for you. When

%g BRINT Eﬁh;te Light into a p

Fism witit“ ' "produce _ wha
13@ PRINT “press any ksy for an

re"
BNSUE =INKEY3 TIF KE="" OW

13 THEN & 0 409
k$=gHR3R J=1 TO 1@- RERD d

6@ PRINT CHR$ 4, -

EXT
70 DATA 6%,32,83; 11 1@1;‘3’3, p B X
6,114,117 199

Fig. 5.6. Using ASCII codes to conceal a message.

you press a key, the loop that starts in line 5 prints ten characters on
the screen. Each of these is read as an ASCII code from a list, using a
READ instruction in the loop. The PRINT CHRS$ d in line 6¢) then
converts the ASCII codes into characters and prints the characters,
using a semicolon to keep the printing in a line. Try it! If you wanted
to conceal the letters more thoroughly, you could use quantities like
one quarter of each code number, or 5 times each code less 20, or
anything else you like. These changed codes could be stored in the list,
and the conversion back to ASCII codes made in the program. This
will deter all but really persistent de-coders!

Order, order!

We saw earlier, in Fig. 4.8, how numbers can be compared and we
have also looked at testing strings for equality. We can also compare
strings, using the ASCII codes as the basis for comparison. Two
letters are identical if they have identical ASCII codes, so it's not

48 The ZX Spectrum

difficult to see what the identity sign, =, means when we apply it to
strings. If two long strings are identical, then they must contain the
same letters in the same order. It’s not so easy to see how we use the >
and < signs until we think of ASCII codes. The ASCII code for A is
65, and the code for B is 66. In this sense, A is ‘less than’ B, because it
has a smaller ASCII code. If we want to place letters into alphabetical
order, then, we simply arrange them in order of ascending ASCII
codes.

This process can be taken one stage further, though, to comparing
complete words, character by character. Figure 5.7 illustrates this use
of comparison using the = and > symbols. Line 2f) assigns a nonsense
word - it’s just the first six letters on the top row of letter keys. Line 3¢

1@ CLS

ET ag="9w
gg ERINT,: INPUT “tgpe a word

43 IF b$=a$ THEN PRINT "Same 3

e!™: GO TO 9999
a génIF as:bs THEN LET c%=a%: LE

T ET _b$=C¥ &
ESHPRINT "Order is ;a%E; then

"-b$

Fig. 5.7. Comparing words to decide on their alphabetical order,

"

then asks you to type a word. The comparisons are then carried out in
lines 49 and 5¢. If the word that you have typed, which is assigned to
b$, is identical to qwerty, then the message in line 4§ is printed, and
the program ends. If ‘qwerty’ comes earlier in an index than your
word, then line 5§ is carried out. If, for example, you typed ‘tape’,
then since t comes after g in the alphabet and has an ASCII code that
is greater than the code for q, your word b$ scores higher than a$, and
line 5¢ has no effect. If the word that you typed ‘comes earlier’ than
qwerty, meaning that its ASCII codes are lower, then a$ is ‘greater
than’ b$. Suppose, for example, that you type ‘peripheral’ as your
word. This is ‘less than’ qwerty and the second part of line 50 swaps
them round. This is done by assigning a new string, c$ to a$ (so that c$
= “gwerty”), then assigning a$ to b$ (so a§ = “peripheral™), then b$ to
¢$ (so that b$=“qwerty"). Line 69 will then print the words in the
order a$ and then b$, which will be the correct alphabetical order,
and the test in line 50 fails. Note the important point, though, that
words like gwertz and gwertx will be put correctly into order - it's not
just the first letter that counts.

String Along With Spectrum 49

Numbers in array

The variable names that we have used so far are useful, but there’s a
limit to their usefulness. Figure 5.8 illustrates this. Lines 1§ to 40

12 CLS : DIM atl@)

20 FOR n=1 TO 1@

2@ LET a(n) =S+INT (RNDx32)

4@ NEXT n: PRINT

S PRINT TRB 11; "Marks Llist"

6@ PRINT : FOR =1 TO 1@

70 PRINT "“Item ";.j;'" received

“;atjl);" percent.”
80 NEXT J4

Fig. 5.8. An array of subscripted variables. It’s simpler than the name suggests!

generate an (imaginary) set of examination marks. This is done using
random numbers simply to avoid the hard work of entering the real
thing. No, it's not the way that the examiners arrive at their marks!
The variable in line 30 is something new, though. It’s called a
subscripted variable, and the ‘subscript’ is the number that is
represented by n. The name that we use has nothing to do with
computing - it’s a name that was used long before computers were
around. How often do you make a list with the items numbered 1,2,3
... and so on? These numbers 1,2,3 are a form of subscript number,
put there simply so that you can identify different items. Similarly, by
using variable names a(l), a(2), a(3) and so on, we can identify
different items that have the common variable name of a. The whole
group is called an array. A member of this group like a(2) has its name
pronounced as ‘a-of-two’.

The usefulness of this method is that it allows us to use one single
variable name for the complete list, picking out items simply by their
identity numbers. Since the number can be a number variable or an
expression, this allows us to work with or pick out any item of the list.
Figure 5.8 shows the list being constructed from the FOR...NEXT
loop in lines 20 to 49. Each item is obtained by finding a random
number between 5 and 95, and is then assigned to a(n). Ten of these
‘marks’ are assigned in this way, and then lines 50 to 80 print the list.
It makes for much neater programming than you would have to use if
you needed a separate variable name for each number.

You can’t just rush into the subscripted variable business, though.
The computer has to keep track of all these different values, and this
needs a certain amount of organisation. This means instructing the
computer to prepare space. This is done by using the instruction word

50 The ZX Spectrum

DIM. DIM means ‘dimension’, and the instruction consists of
naming each variable that you will use for arrays, and following the
name with the maximum number, within brackets, that you expect to
use. You aren’t forced to use this number, but you must not exceed it.
If you attempt to use a number that is higher than the one you haye
put into the DIM instruction, then the computer will stop with an
error message — ‘3 Subscript wrong’. You will have to change the
DIM instruction and start again — which will be tough luck if you
were typing in a list of a hundred names! Note that you will have to
dimension for every array that you use.

19 CLS : DIM 2%$(10,163

28 PRINT "Please enterq surnamsa
5,!0
3@ FOR =1 TO 1@
- 4@ FPRINT "Name ".:J: INPUT astJ
S8 NEXT_ J
6@ PRINT "RLL done"

78 PRUSE 106

886 CL.S : FOR n=31 TO 1@ 3TER 2
o3 FOR s=0 TO 1

1a® PRINT a2a%(n+s), ! NEXT s

118 NEXT n

Fig. 5.9. Using subscripted string variables. You have to dimension this type of
array carefully.

Figure 5.9 extends this another step further. This time you are
invited to type a name for each of ten items. After you have pressed
ENTER, the name that you have typed is assigned as one of the items
of the array, a$. When the list is complete, there is a pause so that you
can get your breath back. The pause is programmed, logically
enough, by using the instruction PAUSE. PAUSE has to be followed
by a number which specifies how long the pause will be. The pauses
are measured in fiftieths of a second (sixtieths in the USA and Japan),
so that PAUSE 50 will give a one-second pause in Britain but
PAUSE 6§ is needed in USA and Japan. The pause that we've used is
PAUSE 19§, which gives a two-second delay. The screen is then
cleared. The list is then printed neatly, using line 1f§. Thisillustrates
another nested loop. The loop that starts in line 99 uses the variable
‘s’. When s is zero, value of nis |, for example, then what is printed is
a$(n+s), which is a$(1). The comma then forces printing to the centre
of the screen, and the NEXT s takes effect. This causes the value of
n+s to become 2, so that a$(2) is printed. That’s the end of the s loop
this time round, so line 11 is carried out, taking a new line. It's a very

String Along With Spectrum 51

simple way of printing the names in two columns. The important
point about this program is that it demonstrates that it’s not just
numbers that we can keep in this array form. One point you have to
watch, though, is that the name of a string array must not be the same
as the name of an ordinary string variable. You can have a number
variable n and a number array n() existing together, but a string array
a$() will delete a string called a$. Unless you use a lot of variablesina
program, it’s not exactly a handicap, but you do need to be careful
about how you select names for string arrays.

There is one novelty that I have dodged so far, though. Line 1§ of
Fig. 5.9 shows a new twist to the use of DIM. As we used it previously,
DIM had to be used when we had a number array, and the number
that followed DIM was the number of items in the array. We also
have to dimension a string array, and this is rather more complicated
than dimensioning a number array. A Spectrum string array needs
two dimensioning numbers within the brackets. One of these is the
number of items in the array, as before. The other is the maximum
number of characters in a string. If, for example, you dimension to
have 20 characters, then you can have any number up to twenty, but
no more. You have to decide in advance what will be a reasonable
number of characters per string item. If you choose a large number,
like 100, then you won’t be able to use many string items. That’s
because each of them will need 100 units, called byres, of memory.
This amount will be needed whether your strings are 100 characters
long or not - it’s what you have dimensioned that counts. 100 string
items at 100 characters each is ten thousand bytes of memory used! If
your string items are shorter than the maximum that you have set,
Spectrum will automatically fill them out with spaces. If they are too
long, letters will be chopped off from the end!

As a matter of record ...

Entering items into arrays is hard work, particularly if you are a one-
finger typist. It's certainly an activity that you don’t want to repeat if
you can possibly avoid it. Spectrum allows you to avoid it by saving
(which means recording) arrays on cassette. The ZX Microdrive will
be available later for this task, also.

The program in Fig. 5.10 illustrates how an array, a number array
in this example, is saved. The steps up to line 40 should be familiar
territory to you by now, so we'll concentrate on 4f) onwards. Line 49

52 The ZX Spectrum

i@ CL.S : DIM ai(s5a

28 FOR Jj=1 T S&: LET &1{j) =15+
INT (RNED*7S)

3@ NEXT

4@ PRINT '"Now prepare toc recor
d the LlList.,."”""Hake =ure that you
have a " ""tassetlte in the rfecor

der.”

S@ SAVE "marks" ORTR a8)

5@ CLS : PRINT "BlLl done_now Vv
erify it."” " “"Pleasse rewind the Ca
szette .,
taz%"PQUEE 25Q: PRINT "btow play

80 VERIFY "marks” DRATR all)

Q® PRINT "ALL done.”

Fig. 5.10. Saving a number array on a cassette. Other data, including pictures on
the screen can also be saved (see your Spectrum Manual for details).

delivers a message to tell you what's happening. This is essential,
because you can’t make a recording until you have a cassette in the
recorder - with no reminder like this, you could easily forget. You
also have to remember to pull out the EAR plug from the recorder, if
you haven't already got into the habit. Line 50 is the data-saving line.
The keyword is SAVE, and it has to be followed by a filename. The
ﬁbmmebmemmemmcme&mammumﬂnomwgﬁeme
recording when you come to play it back. By using different
filenames, you can have several data recordings on a tape and allow
the computer to select the one that you want.

The next item following SAVE is the word DATA. This prepares
the computer for saving data as distinct from pictures on the screen.
The last item is the variable name of the array that you want to save,
followed by a pair of brackets. You don’t need to put anything, not
even a space, between the brackets. Note that the filename is enclosed
in quotes, but the array name isn’t. When the Spectrum comes to this
line in the program, it will deliver the message, ‘Start tape, then press
any key'. You must then press the PLAY and RECORD keys of your
recorder, and then press any of the Spectrum keys. The data array
will then be recorded.

Lines 6§ to 8@ then verify that the recording was O.K. After all, if it
took you an hour to type all the data in, you don’t want to take any
risks. A bad piece of tape, a bit of electrical interference while you
were recording - these things could cause a bad recording. The
VERIFY procedure follows familiar lines, with the same items
following VERIFY as followed SAVE.

String Along With Spectrum 53

The playback steps (loading data) follow the same pattern. I've
illustrated them in Fig. 5.11. This time, I’ve used an INKEY$ step to
keep the computer waiting in line 4f). This gives you time to prepare
the cassette, put the EAR plug in place, and rewind the tape to the

1@ CLS : DIM miS2)

20 PRINT TRB 11; "Marks Lisl”
3@ PRINT "“Please prepare data
cassette”“"to replay data. Press

ang key'" " "when readyd."”
LET kR$=INKEYS%: IF k%="" OR

43
k$=CHR% 13 THEN GO TO 4-0 .

5@ PRINT "Loading now': LORD
marks” DATRA mi()

60 FOR =1 TO 49 STEP 4: FOR S
=@ TO 3: IF Jj+45)>58 THEN GO TO 99

=
7@ PRINT TRAB 73%s5;mtj+s);
8@ MNEXT s5: PRINT : MNEXT J

Fig. 5.11. The steps that are needed when an array is replayed from a cassette.

correct place. The first part of line 5) delivers the message - it's
important to know what is going on. The second part of line 50 then
loads the array, using the instruction word LOAD. Once again, this
has to be followed by the filename, DATA, and the array name, then
the pair of brackets. If you start the tape running by pressing the
PLAY key when you see the ‘Loading now’ message, then you will
soon be rewarded by seeing the data appear. Lines 7)) and 80 carry
out the printing action. If you didn’t want to print the data right
away, your program could contain another PRINT line following the
LOAD. A message such as:

Data loaded - please stop recorder

is very useful. Note, incidentally, how the marks are printed in four
columns by using the TAB number 7*s.

Chapter 6
Do It Yourself!

You can get a lot of enjoyment from your Spectrum when you use it
to enter programs from cassettes that you have bought. You can
obtain even more enjoyment from typing in programs that you have
seen printed in magazines. Even more rewarding is modifying one of
these programs so that it behaves in a rather different way, making it
do what suits you. The pinnacle of satisfaction, as far as computing is
concerned, however, is achieved when you design your own
programs. These don’t have to be masterpieces. Just to have decided
what you want, written it as a program, entered it and made it work is
enough. It's 100% your own work, and you'll enjoy it all the more for
that.

Now I can’t tell in advance what your interests in programs might
be. Some readers might want to design programs that will keep tabs
on a stamp collection, a record collection, a set of notes on food
preparation or the technical details of GWR steam locomotives.
Programs of this type are called database programs, because they
need a lot of data items to be typed in and recorded. On the other
hand, you might be interested in games, colour patterns, drawings,
sound, or other programs that require shapes to move across the
screen. Programs of that type will need instructions that we have not
looked at yet, and they are dealt with in the next three chapters. What
we are going to look at in this section is the database type of program,
because it's designed in a way that can be used for all types of
programs.

Two points are important here. One is that experience counts in
this design business. If you make your first efforts at design as simple
as possible, you'll learn much more from them. That's because you're
more likely to succeed with a simple program first time round. You’ll
learn more from designing a simple program that works than from an

Do It Yourself! 55

elaborate program that never seems to do what it should. The second
point is that program design has to start with the computer switched
off, preferably in another room! The reason is that program design
needs planning, and you can’t plan properly when you have
temptation in the shape of a keyboard in front of you. Get away from
it!

Put it on paper

We start, then, with a pad of paper. For myself, I usea ‘student’s pad’
of A4 which is punched so that I can put sheets into a file. This way, I
can keep the sheets tidy, and add to them as I need. 1 can also throw
away any sheets [don’t need, which is just as important. Yes, | said
sheets! Even a very simple program is probably going to need more
than one sheet of paper for its design. If you then go in for more
claborate programs, you may easily find yourself with a couple of
dozen sheets of planning and of listing before you get to the
keyboard. Just to make the exercise more interesting, I'll take an
example of a program, and design it as we go. This will be a fairly
simple program, but it will illustrate all the skills that you need. The
two programs that appear, with comments, at the end of this book
will give you further experience in exploring design for yourself.
Start, then, by writing down what you expect the program to do.
You might think that you don’t need to do this, because you know
what you want, but you'd be surprised. There’s an old saying about
not being able to see the wood for the trees, and it applies very
forcefully to designing programs. If you don’t write down what you
expect a program to do, it's odds on that the program will never do it!
The reason is that you get so involved in details when you start
writing the lines of BASIC that it’s astonishingly easy to forget what
it’s all for. If you write it down, you'll have a goal to aim for, and that’s
as important in program design as it is in life. Don’t just dash downa
few words. Take some time about it, and consider what you want the
program to be able to do. If you don’t know, you can’t program it!
As an example, take a look at Fig. 6.1. This shows a program
outline plan for a simple game. The aim of the game is to become
familiar with units of money around the world. The program plan
shows what I expect of this game. It must present the name of a
country on the screen, and then ask what the main unit of money is
(like pound, dollar, mark and so on). A little bit more thought

56 The ZX Spectrum

Aims:

Present the name of a country on the screen

Ask what the main unit of currency is

Must be correctly spelled

Must avoid user being able to read answer from listing

One point for each correct answer

One additional try allowed

Keep track of attempts

Present score as number of successes out of number of attempts
Pick country names at random

Fig. 6.1. A program outline plan. This is your starter!

produces some additional points. The name of the currency will have
to be correctly spelled. A little bit of trickery will be needed to prevent
the user (son, daughter, brother, sister) from finding the answers by
typing LIST and looking for the DATA lines. Every game must have
some sort of scoring system, so we allow one point for each correct
answer. Since spelling is important, perhaps we should allow more
than one try at each question. Finally, we should keep track of the
number of attempts and the number of correct answers, and present
this as the score at the end of each game. Now this is about as much
detail as we need, unless we want to make the game more elaborate.
For a first effort, this is quite enough. How do we start the design
from this point on?

The answer is to design the program the way an artist paints a
picture. That means designing the outlines first, and the details later.
The outlines of this program are the steps that make up the sequence
of actions. We shall, for example, want to have a title displayed. Give
the user time to read this, and then show instructions. There’s little
doubt that we shall want to do things like assign variable names,
dimension arrays, and other such preparation. We then need to play
the game. The next thing is to find the score, and then ask the user if
another game is wanted. Yes, you have to put it all down on paper!
Figure 6.2 shows what this might look like at this stage.

The BASIC foundations

Now at last, we can start writing a chunk of program. This will just be
a foundation, though. What you must avoid at all costs is filling pages

Do It Yourselfl 57

Display title, then instructions

Present name of country on screen

Ask for unit of currency

Input for reply

Compare with correct answer

If correct, ask if another one is wanted

If incorrect, give one more try

If second try is incorrect, select another country

Ends when user types n in reply to ‘Do you want another one?

Fig. 6.2. The next stage in expanding the outline.

with BASIC lines at this stage. As any builder will tell you, the
foundation counts for a lot. Get it right, and you have decided how
good the rest of the structure will be. The main thing you have to
avoid now is building a wall before the foundation is complete!
Figure 6.3 shows what you should aim for at this stage. There are
only nine lines of program here, and that’s as much as you want. This
is a foundation, remember, not the Albert Hall. It’s also a program
that is being developed, so we’ve hung some ‘danger - men at work’
signs around. These take the form of the lines that start with REM.

1@ CLS : GO SUEB 1000

11 REM titie

20 GO SUB 1200

21 REM Instructions

3@ GO SUB 1400

31 FEM Dimensions and arrays
48 GO SUB 2080

6@ GO SUB 4@80
&1 REM Rnother7

780 IF k$="4" OR k§="Y" THEM GO
TO 42

@ GO TO 9999
9@ REM END

Fig. 6.3. A "core’ or ‘foundation’ program for the example.

REM means REMinder, and any line of a program that starts with
REM will be ignored by the computer. This means that you can type
whatever you like following REM, and the point of it all is to allow
you to put notes in with the program. These notes will not be printed
on the screen when you are using the program, and you will see them
only when you LIST. In Fig. 6.3, I have put the REM notes on lines

58 The ZX Spectrum

which are numbered just 1 more than the main lines. This way, I can
remove all the REM lines later. How much later? When the program
is complete, tested, and working perfectly. REMs are useful, but they
make a program take up more space in memory, and run slightly
slower. I always like to keep one copy of a program with the REMs in
place, and another ‘working’ copy which has no REMs. That way I
have a fast and efficient program for everyday use, and a fully-
detailed version that I can use if I want to make changes.

Let's get back to the program itself. As you can see, it consists of a
set of GOSUB instructions, with references to lines that we haven't
written yet. That’s intentional. What we want at this point,
remember, is foundations. The program follows the plan of Fig. 6.2
exactly, and the only part that is not committed toa GOSUB is the IF
in line 7¢. What we shall do is to write a subroutine which will use
INKEYS to look for a 'y’ or ‘n’ being pressed, and line 70 deals with
the answer. What's the question? Why, it’s the ‘Do you want another
game’ step that we planned for earlier.

Take a good long look at this piece of program, because it's
important. The use of all the subroutines means that we can check
this program easily - there isn’t much to go wrong with it. We can
now decide in what order we are going to write the subroutines. The
wrong order, in practically every example, is the order in which they
appear. Always write the title and instructions last, because they are
the least important to you at this stage. In any case, if you write them
too early, it's odds on that you will have some bright ideas about
improving the game soon enough, and you will have to write the
instructions all over again. A good idea at this stage is to write a line
such as:

9 GO TO 3¢

which will cause the program to skip over the title and instructions.
This saves a lot of time when you are testing the program, because
you don’t have the delay of printing the title and instructions each
time you run it.

The next step is to get to the keyboard (at last, at last!) and enter
this core program. If you use the GO TO step to skip round the title
and instructions temporarily, you can then put in simple PRINT lines
at each subroutine line number. We did this, you remember, in the
program of Fig. 4.13, so you know how to go about it. This allows

Do It Yourself! 59

you to test your core program and be sure that it will work before you
go any further.

There are two ways of going further. One is to record each piece of
the program on tape as you go along. The Spectrum hasa MERGE
command, which allows you to construct a long program from short
sections by adding pieces from tape. The alternative, which I prefer, is
to keep adding to the core. If you have the core recorded, then you
can load this into your Spectrum, add one of the subroutines, and
then test. When you are satisfied that it works, you can record the
whole lot on another cassette. Next time you want to add a
subroutine, you start with this version, and so on. This way, you keep
tapes of a steadily growing program, with each stage tested and
known to work.

Subroutine routine

The next thing we have to do is to design the subroutines. Now some
of these may not need much designing. Take, for example, the
subroutine that is to be placed in line 49@@. This is just our familiar
INKEYS routine, along with a bit of PRINT, so we can deal with it
right away. We may even have this piece of routine recorded on tape
(all neatly labelled, with a note of the line numbers, I hope). If we do,
then we can use MERGE to run this on to our core program. The
editing procedures of the Spectrum will then allow us to renumber the
lines of the recorded subroutine to the numbers of 40§ onwards that
we want.

4200 -PRINT “"Would you Like anoth
er one?" ""Please press 4 or n ke

g "
4310 LET k&=INKEYS%: IF k&="" OR
ki=CHR% 13 THEN GO TO 4010

4220 RETURN

Fig. 6.4. The subroutine for line 48¢g.

If we don’t have it on record, we will have to write it, and Fig. 6.4
shows the form it might take. The subroutine is straightforward, and
that’s why we can deal with it right away! Type it in, and now test the
core program with this subroutine in place.

The hard part

Now we come to what you might think is the hardest part of the job -

60 The ZX Spectrum

the subroutine which carries out the “‘Play’ action. In fact, you don’t
have to learn anything new to do this. The Play subroutine is designed
in exactly the same way as we designed the core program. That means
we have tp write down what we expect it to do, and then arrange the
steps that will carry out the action. If there’s anything that seems to
need more thought, we can relegate it to asubroutine to be dealt with
later.

As an example, take a look at Fig. 6.5. This is a plan for the Play
subroutine, which also includes information that we shall need for the

® Keep answers as a set of ASCII codes

® Each DATA line of codes ends with

@ Keep list of countries in an array, q$

® The number of the array item can be used to select the DATA line for the
answer

@® Use variable ‘try’ to record tries, and ‘score” to record number of successes

® Use ‘go’ to keep track of the number of attempts at one question (limit to 2)

Fig. 6.5. Planning the ‘Play’ subroutine.

setting-up steps. The first item is the result of a bit of thought. We
wanted, you remember, to be sure that some smart user would not
cheat by looking up the answers in the DATA lines. The simplest
deterrent is to make the answers in the form of ASCII codes. [t won’t
deter the more skilled, but it will do for starters. I've decided to put
one answer in each DATA line in the form of ASCII codes, with a
as the last number. Why @? The answer is as a ‘terminator’
(remember?), so that the computer reads the correct number of codes
each time. That’s the first item for this subroutine.

The next one is that we shall keep the names of the countries in an
array. This has several advantages. One of them is that it’s beautifully
easy to select one at random if we do this. The other is that it also
makes it easy to match the answers to the questions. If the questions
are items of an array whose subscript numbers are 1 to 1), then we
can place the answers in DATA lines whose numbers are, for
example, 6001 to 6p10. We can put the DATA line number in the
form 6@ + n, where n is the number of the item. What I’'m aiming at
is the use of an instruction ‘RESTORE number’. This will make the
next READ use the line whose number follows the RESTORE
instructions. If, for example, we use RESTORE 605, then the next
READ instruction will read the data starting at line 695, and so on.

Do It Yourself! 61

RESTORE 60@f+n looks like being useful to us for locating the
answers.

The next thing that the plan settles is the names that we shall use for
variables. It always helps if we can use names that remind us of what
the variables are supposed to represent. In this case, using ‘score’ for
the score and ‘try’ for the number of tries looks self-explanatory. The
third one, ‘go’ is one that we shall use to count how many times one
question is attempted. Finally, we decide on a name for the array that
will hold the country names - q$().

Play for today

Figure 6.6 shows what I've ended up with as a result of the plan in Fig.
6.5. The steps are to pick a random number, use it to print a country
name, and then find the answer. That’s all, because the checking of
the answer and the scoring is dealt with by another subroutine.

20908 LET go=0: RANDOMIZE : LET v

=14+INT (RND%1@)

2391 REM Picks v at random betitwe
1 and 19

2016 CLS : PRINT AT 5,3;"The <ov

ntry is N+ (v)

2323 PRI :3;"The currency
is the

2030 IHPUT “"PlLease answev here-*"
i X%: PRINT x%: LET try=try+l
2040 GO SUB 5000

2041 REM Find correct answer,a$
28580 RETURN

Fig. 6.6. The program lines for the ‘Play’ subroutine.

Always try to split up the program as much as possible, so that you
don’t have to write huge chunks at a time. As it is, I've had to put
another subroutine into this one to keep things short.

We start in line 2P with a new instruction, RANDOMIZE. This
doesn’t do anything visible, but it’s useful all the same. What it does is
to ‘reshuffle’ the random number generator of the Spectrum, so that
there is no chance of a set of numbers repeating. In a simple game like
this, it’s not much of a risk, but it’s useful to know for the future. The
second part of line 2@ then picks a number, at random, lying
between | and 1. As before, we use line 20f)1 to hold a REM that
reminds us of what's going on. Lines 20 1) to 2¢ 3¢} are straightforward
stuff. We print the name of the country that corresponds to the

62 The ZX Spectrum

random number, and ask for an answer, the currency of that country.
The last section of line 2f3¢) counts the number of attempts. This is
the logical place to put this step, because we want to make the count
each time there is an answer. Now it's chicken-out time. I don’t want
to get involved in the reading of ASCII codes right now, so I'll leave it
to a subroutine, starting in line 509§, which I'll write later. The REM
in line 2p41 reminds me what this new subroutine will have to do, and
the Play subroutine ends with the usual RETURN.

Down among the details

With the Play subroutine safely on tape, we can think now about the
details. The first one to look at should be one that precedes or follows
the Play step, and I've chosen the Score routine. As usual, it has to be
planned, and Fig. 6.7 shows the plan. Each time that there is a correct
answer, the number variable ‘score’ will be incremented, and we can
go back to the main program. More is needed if the answer does not
match exactly. We need to print a message, and allow another go. If
the result of this next go is not correct, that’s an end to the attempts.

Figure 6.8 shows the program subroutine developed from this

e For correct answer, increment ‘score’

® For first incorrect answer (when go=#), try again, make go=1

® For second incorrect answer (when go=1), pass to next question
® Make go=f before next question is asked

Fig. 6.7. Planning the ‘Score’ subroutine.

390@ PRINT : IF x%=a% THEN LET s
core=score+l: PRINT "Correct_yocu
¢ scarTe i8S mow “iTCoOre; ""in "M Lir
g;;asttenpts.": PRUSE 208: GO TOQ

3

3001 REM Correct answer

53910 IF go=0 THEN PRINT “NOot cor

rect_but it might be """ youf sp

elling! You get another try free

“.: LET go=1: PRUSE 158: &0 SuB =2

@i0: GO TO J@2A

5911 REM First incorfrrect

IP2@ LET %o=a: PRINT “No tuck__tr
ane .”: PRUSE 15@

3021 REM Second incorrect

3030 RETURN

Fig. 6.8. The 'Score’ subroutine written.

Do It Yourselfl 63

plan, Line 3p@¢ deals with a correct answer. The GO TO 3¢3¢
ensures that if the answer was correct, the rest of the subroutine is
skipped, and the subroutine returns. If the answer is not correct,
though, line 3¢ 1) swings into action. This prints a message, and then
calls the subroutine at line 20 1§ again so that the user can make
another answer entry. The GO TO 3¢@¢ at the end of line 3¢ 1§} then
tests this answer again.

Now there's a piece of cunning here. The number variable ‘go” must
start with a value of) (make a note of it!). When there is an incorrect
answer, however, and ‘go’ is still @, line 3() 10 is carried out. One of the
actions of line 3¢ 10, however, is to set ‘go’ to 1. When you answer
again, with go=1, line 3p@p will be used, and if your second answer is
wrong, line 301 cannot be used, because ‘go’ is not zero. The next
line that is tried, then, is 332 This puts ‘go’ back to zero for the next
round, prints a sympathetic message, pauses, and then lets the
subroutine return in line 3030,

Now that we’ve got the bit between our teeth, we can polish off the
rest of the subroutines. Figure 6.9 shows the subroutine that deals
with dimensioning and arrays. Line 140§ sets all the variables for the
scoring system to zero. Line 141§ dimensions the array q$ that will be
used for the names of the countries. Line 142§ then reads the names
from a data list into the array - and that's it! We can write the DATA
lines later, as usual.

14330LET try=8G: LET score=@: LET
go=

14091 REM ALL variablies to zero
1419 BEM Gauntiiss uise

: gountrie i L
14280 FOR j=1 TO 1@: READ asilJj):
NEXT J

1421 REM read List

143@ RETURN
Fig. 6.9. The dimensioning and array subroutine.

Next comes the business of finding the answer. We have planned
this, so it shouldn’t need too much hassle. Figure 6.10 shows the

S5PpP@ RESTORE 6@0@@+v: LET af=""
SE@1 REM Find correct data tine
S31@ READ n: IF n=0 THEN GO TO ©

5020 LET ag$=a%$+CHRS$ n: GO TO S@i

@
S038@ RETURN
Fig. 6.10. Checking the answer.

64 The ZX Spectrum

program lines. The variable v is the one that we have selected at
random, and it's used to select a DATA line. Lines 5¢ 1§ to 5020 read
numbers from the DATA line, stopping when a §) is found. Note that
we have to check for a) before we convert the number to a letter and
add it to the string. Line 502§ builds up the answer string, which we
call a$. This is set to a blank in the last part of line 5p#§) to ensure that

%33@ CLS : PRINT TRB 1@;"Instruc
ions"”

A21@ PRINT TRE 2; "You witt be pr
odided with the” ""namwe ©FfF =2 Ccoun
try. You should” "then type the
name of its main" “"unit of BanEey
,then press ENTER."‘"Correct spe
lLling is essential!"“"The camput
er will keep score.”

1228 PRAUSE 35@

12328 RETURN

Fig. 6.11. The instructions - always leave these until you have almost finished,

we always start with a blank string, not with the previous answer.
That's the hard work over. Figure 6.11 is the subroutine for the
instructions, and Fig. 6.12 is the title subroutine. Each of them
includes a pause, and the title has another trick to it, of which much
more later. Finally, Fig. 6.13 shows the DATA lines.

1002 PRINT TAB 9; FLASH 1;"THE M
ONEY GRME'™

1212 PRAUSE 258

1220 RETURN

Fig. 6.12. The title subroutine.

550@ DRTH “France”,”"Rustria"” ,""Co
lonbia","Den-ark“,"India","Itatg
“,"HoLLand“,“Portugal“,"Uenezuet
a“,"Yuggslavia“

6001 D A 7@,114,97.11@,992,2
6002 DATA 83,99,124,105,1a8, 138,
195,110,1@3,@

6803 DRATAR 88,1@e1,115,111,@

6804 DATA 75,114,111 ,1l1@,1a1,&
6025 DATA 82,117.,112.,181,101.,0
@96 DATRA 76,195,114 ,101,0

sggz gnTn 71,117,185 ,1e8 ., .1eé@,1a31
rl F

6298 DATA 69,115,99,117,1@&,111,

@
?ggg DATA 66,111,1088,185,118,9897,

@
6216 DATA 68,105,110,97,114,8
Fig. 6.13. The DATA lines that are needed.

Do It Yourself! 65

Now we can put it all together, and try it out. Because it’s been
designed in sections like this, it’s easy for you to modify it. You can
use different DATA, for example. You can use a lot more data - but
remember to change the DIM in line 141f. You can make it a
question-and-answer game on something entirely different, just by
changing the data and the instructions. Take this as a sort of BASIC
‘Meccano set’ to reconstruct any way you like. It will give you some
idea of the sense of achievement that you can get from mastering your
Spectrum!

Chapter 7
Special Effects

Any modern computer is expected to be able to produce dazzling
displays of colour and other special effects. The Spectrum is no
exception, and in this Chapter, we'll start to look at some of the
effects that are possible. To start with, we have to know some of the
terms that are used, and the first of these is graphics. Graphics means
pictures that can be drawn on the screen, and all modern computers
have instructions that allow you to draw such patterns. In
connection with these patterns, you'll see the words low resolution
and high resolution used. ‘Resolution’ isn’t such an easy term to
explain. Imagine that you are creating pictures on a sheet of paper
about eleven inches across by eight inches deep — that’s roughly the
size of a TV screen that is described as being a 14 inch screen (it’s
about 14 inches diagonally!).

Now if you are asked to create the pictures by using rectangles of
coloured paper, you are dealing with picture making in a way that is
very similar to the way that the computer operates. Suppose that you
are allowed only 704 pieces of paper, of such asize that all 704 will fill
the screen. You couldn’t draw very finely detailed pictures with so few
large pieces, and this is what we mean by low resolution. On the other
hand, if you were provided with pieces so small that you would need
45056 of them to fill an entire screen size, you could produce very
much more detailed pictures. This is what we mean by high
resolution. The Spectrum has both low and high resolution graphics
available, and the figures that I have used correspond to the size of the
blocks that the Spectrum uses.

Vivid impressions

The best place to start on our exploration of special effects is with the

Special Effects 67

PRINT modifiers. As the name suggests, these cause changes in the
appearance of anything that is printed onthe screen. Thisactionis the
same no matter what we print - letters, digits, or graphics shapes.

1® CLS : PRINT "Mormal print
20 INUERSE 1

38 PRINT “Invaerse on' o
40 PRINT “"Effect continues
5@ INVERSE @ i

6@ PRINT "Back to normat

Fig. 7.1. Special effects. INVERSE is used to introduce these effects, showing
how ‘1" is used to switch the effect on and ‘@’ to switch off.

Take a look at the program in Fig. 7.1. The special effect in this
example is INVERSE, short for ‘inverse video'. It means that the
colours we use for printing are reversed. Using black and white, we
normally have black letters on a white background, but with
INVERSE 1, we have white letters on a black background. As we’ll
see later, INVERSE 1 will also work if the colours are not black and
white.

INVERSE is used both to switch the effect on and to switch it off,
according to the number that follows INVERSE. This number must
be @ or 1 - you'll get an ‘invalid colour’ message if you try to use any
other numbers, Line 1§ of Fig. 7.1 prints a message, using normal
display, then line 2¢) switches on the inversion. When the INVERSE
instruction is placed in a line of its own, or as part of a multistatement
line, it will act until it is cancelled. Because of this, lines 3)) and 4¢
print in inverse video. Line 5f contains the switch-off instruction,
INVERSE §, so that line 6@ is printed normally.

INVERSE can also be used within a PRINT instruction, though.
When this is done, the effect lasts only for as long as that line, or until
it is cancelled. Figure 7.2 illustrates this point, with the inverse
switched on and off in line 2§, on in line 39, but not appearing in line
4f). This alternative use of INVERSE, which also applies to other

1@ CLS
290 PRINT "Blachk on white”; INU
ERSE 1;'" white on btack”; INUERS
E ;" and normal”
30 PRINT INUERSE 1; "Inverse in
this Line*™

48 PRINT "..but not in this on
e

Fig. 7.2. Using effects within a PRINT line. The effect cannot last beyond the end
of the line.

68 The ZX Spectrum

effects, allows us to use a great variety of stunning displays in our
programs.
Figure 7.3 illustrates another of these ‘effect’ instructions, FLASH.
Like INVERSE, FLASH is turned on when it is followed by a |, and
1@ CLS
2 PRINT "Watch this”; FLASH 1
Yl T B A
3@ PRINT "Flashing stops on 1k
igs /Line"™ H
4@ PRINT "It can be"; FLASH 1;
“ an"; FLASH @;" or oFF"

Fig. 7.3. The FLASH effect. This is programmed in the same way as INVERSE.

off when it is followed by a §. Also like INVERSE, the effect of
FLASH depends whether it is in a line (or statement) of its own, or is
part of a PRINT instruction. The flashing, like all of the other screen
effects, continues for as long as the flashing characters are on the
screen. In other words, once you have put the flashing (or inverse)
characters on the screen, they will stay there until they scroll off or
until the screen is cleared.

Write it in colour

It's time now to look at the colour instructions of Spectrum. There
are three particularly important ones, which use the instruction
words BORDER, PAPER and INK. We'll start with BORDER. As
you might guess, this deals with the colour of the ‘border’, the outer
part of the screen on which we can’t put text. The colours that we can
use are shown above the top row of keys, and we select a colour by
using the number that is printed on the key. For example, red
corresponds to key 2, yellow to key 6 and so on.

Figure 7.4 demonstrates the range of BORDER colours, and how
BORDER is used. BORDER has to be followed by a number in the
range P to 7. These are the numbers for the colours, as shown on the
keys. We print the number at the centre of the screen each time, so

1@ CLS : PRINT YAB 9;: “"border (
oLovrs™

28 FOR n=1 TO 7

3@ BORDER n: PRINT AT 11,15;n0

40 FPRAUSE 159

5@ HNEXT n

Fig. 7.4. The range of BORDER colours.

Special Effects 69

that you can see which colour is being displayed. This is a good time
to make any final tuning adjustments to your TV, because a colour
picture is more fussy about tuning than a black/white one.

The next items are PAPER and INK. The names tell all, really.
PAPER is used to select the colour of the background, and INK to
select the colour of the letters or other shapes that you print on the
paper. The range of colours is) to 7, as before. The numbers 8 and 9
can be used, but they don’t produce colours. They are reserved for
rather more advanced special effects.

Figure 7.5 illustrates PAPER and INK in use. An instruction such
as PAPER 6 does not, by itself, cause colour to appear. If we print on

1@ PPPER &: CLS
20 INK 1 _
3@ FRINT "This is ink 1 on P2

o BRSNS

«: PRPER 3; INK 7;" d
ifferent paper and ink in a line

L
68 PRINT ,, INK 9;"contrast

;? F“FII:ER 1; " cotour™; PAPER B
LRI

Fig. 7.5. Using PAPER and INK instructions to provide background and
foreground colours.

ing
L e
‘

the screen following a PAPER 6 instruction, the background for our
printing will appear in yellow, but only for the part on which we have
printed. To make PAPER 6 colour acomplete screen yellow, we have
to follow it with a CLS instruction. That’s illustrated in the first line
of Fig. 7.5. Line 2§) contains only the instruction INK 1. This causes
all the following PRINT instructions to appear in this colour, which
is blue. Don’t expect the letters to appear in a very noticeable colour,
because colour TV sets are not very good at displaying colour in small
chunks. Add to that the fact that 90% of the male population is
partially colour blind, and you'll see that the most impressive colour
displays are the ones that use strong colours in big areas.

Back to the program, though. Line 3¢) prints in blue because of the
INK 1 in line 2¢. Line 40 then shows INK being used, as we used
INVERSE and FLASH, in a PRINT instruction. As you might
expect, this makes the instruction temporary, lasting only for the
duration of the line. Line 5f) takes this a step further. It changes both
the PAPER and the INK colours in one line. Finally, line 6§

70 The ZX Spectrum

demonstrates the use of the ‘colour’ 9. This isn’t a colour, just an
instruction which caused the INK colour always to be a contrast to
the PAPER colour. As we change the PAPER colour in the course of
line 6f), then, the INK colour changes without any effort on our part.
It’s a very neat and useful dodge to ensure that the message always
stands out! Note, incidentally, that no matter how you alter
BORDER, PAPER and INK colours, you can always see the
message at the bottom lines of the screen. That’s good design!

Shaping up for games

Now let’s start on graphics. In this chapter, we're dealing exclusively
with low resolution graphics, which means that we can print a shape
in each of the normal PRINT spaces. The shapes that we can place in
this way are quite varied, but the number of positions is limited. It’s
the usual 32 positions per line, 22 lines per screen that we use for
printing text. This can produce some quite detailed drawings, as we
shall see, but the scope for moving them around is rather less.

At this point, I think it’s necessary to point out that a home
computer, programmed in BASIC, can’t produce all of the dazzling
effects that you see on arcade games machines. For one thing, the
arcade machines are not programmed in BASIC, and for another,
they cost many times more than a home computer. Most of them will
earn enough in takings in a night to buy dozens of home computers!
That doesn’t mean that you can't play good games on home
computers. It does mean, though, that you can forget about lightning
action games, with all sorts of shapes moving fast in different
directions. Horses for courses, as they say ...

Getting back to the graphics, take a look at Fig. 7.6. This shows
you two ways of creating shapes that you can print on to the screen.

LSia BORDER 4: PAPER 1: INKR 4: C

20 PRINT -~ s "
38 PRINT ;
4@ PRINT L
S@ PRINT ™ *

38 PRINT RT 12,12;9%
Fig. 7.6. Obtaining graphics shapes from the keyboard.

Special Effects 71

Line 10 is straightforward, setting the border, paper and ink colours
that we shall use. The novelty starts in line 2f). We've placed some
graphics shapes between the quotes, and the important thing to look
at is how we did it. After the first quote, press the CAPS SHIFT and
the ‘9" key at the same time. This causes the cursor to appear as a
flashing G, meaning that you are ready to enter graphics.. The
graphics shapes that you can enter now are the ones that are shown on
the number keys 1 to 8. In addition, if you press CAPS SHIFT along
with any one of these keys, you will get the inverse of the pattern.

The first line of graphics, then, is obtained by pressing, in turn, the
8 key, then CAPS SHIFT and 7, then 8, then 4, then 8. You then have
to leave graphics mode again so that you can put in the final quote
mark. You leave graphics mode by pressing CAPS SHIFT and 9
again, whereupon the flashing G will turn back to a flashing L. You
can then enter the quote mark in the usual way. The next line is dealt
with in the same way, using a set of the characters that are on the ‘6’
key. There are five of these characters in line 3¢, and another five of
them in line 40, Line 5p uses a CAPS SHIFT 5, then three 8s, thena
h

Now try it out, ignoring line 6¢ to 8) for the moment. You'll see
that it prints the pattern that is hinted at in the listing. This is placed at
the left-hand side of the screen, because we haven't used a TAB
number with our PRINT instructions. It would be a nuisance to have
to do this in each line, so lines 70 to 8¢ demonstrate a much more
useful way of printing a pattern of this type, and also of controlling its
screen position. Line 60 simply containsa PAUSE to give you time to
see what's happening, and then line 70 declares a string variable, g$.
This string is a large one, however, because it’s a set of graphics
characters. There’s nothing new to learn here about how to get the
graphics characters, but how they are placed is new. We start with the
LET g$ =" part in the usual way, then switch to graphics mode by
pressing CAPS SHIFT and ‘9". Put in the first five graphics shapes,
just as in line 20, but then go for the SPACE key. Hold this key down,
and watch the cursor move across the line, to reappear one linc down.
Stop it when it has got to the space immediately under the first
character position in the top line. This is the space that follows the
first quote mark — we're aiming for the position immediately under
this. Having got there, type the five chequer patterns by using the ‘6’
key. Note that you don’t have to leave graphics mode to do this. Then
space along and down as before, so that you can place another row of

72 The ZX Spectrum

chequer patterns immediately under the previous set. Put in the
fourth line of patterns in the same way, and then leave graphics mode,
and put in the last quote.

Now what all this has done is to make a string of graphics
characters and spaces. Since it’s a string with the name g$, we can
print it in exactly the same way as we could print any other string, as
line 8¢ demonstrates. PRINT AT is a particularly useful instruction
for this purpose, because it allows us to print the string at any position
on the screen. It also, as we shall see shortly, allows usto animate our
patterns,

Steady on, though. Before we plunge any deeper, we need to know
how to design these patterns. It's not easy just to sit at the keyboard
and produce patterns unless you are very artistic. For the less gifted
(me especially) a bit of planning is needed. The best planning aids that
you can invest in are a ruler, a 2B pencil, and a pad of graph paper. |
am using a ‘Guildhall’ graph pad Ref. 1510 at the moment. This is
scaled 1,5, and 10 mm, and it’s ideal for planning Spectrum patterns. I
have also used graph pads by Chartwell and other suppliers, so your
stationers should be able to find something suitable for you at a
reasonable price.

I use the small 5 mm X 5 mm squares on the graph paper to
represent the character blocks of Spectrum. I start by sketching out
the pattern that I want to use, trying to keep to the edges of the blocks,
as Fig. 7.7 shows. This is a very much more elaborate shape, and I've

|_

L | 1 |

Fig. 7.7. Sketching a shape that is to be programmed. This should be done on
graph paper, or on tracing paper pinned over graph paper.

used it to show just how effective these simple graphics shapes can be.
Planning is important, because you will save a lot of time if you can
enter the shape into the program in one go. If you make mistakes, it’s
very difficult to edit these graphics shapes. The reason is that the
invisible spaces will be affected by deleting, and they cause the lines of

the pattern to shift about, changing the shape of the whole pattern as
you edit. If you plan the shape carefully, you won’t need to edit!
Figure 7.8 shows the result in the form of a program. This prints the

|

Special Effects 73

shape at a starting position at the centre of the screen. Note that this
1@ BORDER @: PRAPER 1: IMK &: C

LS

20 LET g9g%="

I
\
30 PRINT AT 12,16;9%
Fig. 7.8. The program which prints the shape. ‘

does not put the shape itself at the centre of the screen. When you use i
PRINT AT 12,16; then what goes into that space is the first character
of the shape. In this case, it’s the left-hand tip of the rotor blade. If we ,
want tp print the whole shape centred, we have to find where the i ‘
centre is relative to this left-hand tip. Try PRINT AT 8,10; for this -
shape. ! '
Now we can try a bit of animation. The program of Fig. 7.9 shows |
how we can animate a shape by printing it in one position, wiping it
out, and then printing in a different position. If you can print in ‘
slightly different positions each time, and repeat the action fast ‘
enough, you will see the effect of a moving image. In Fig. 7.9, the \

51@ BORDER @: FPRAFER 1: INK G: C | ‘
L
28 LET g%="

32 EOR V=13 TH @ ST
4@ PRINT AT J,183;9%
6@ PRINT RT 4J,1@; INK 1;9%

8@ NEXT J

Fig. 7.9. Simple animaticn, using a string of graphics shapes which is alternately
printed and wiped out.

74 The ZX Spectrum

printing is done in the usual way, and the ‘wiping’ is done simply by
printing again with INK that is the same colour as the PAPER. The
effect, however, is not ideal. It’s animation of a sort, but slow and
jerky. There are two reasons. One is that we have to take the shape up
the screen one line at a time - we can’t use half or quarter lines. The
other reason is that BASIC is rather a slow-acting program language
for this sort of thing. There are only a few computers that can do
animation of this type convincingly using BASIC, and they cost a lot
more than the Spectrum. We'll look at ways of getting around some
of the problems in a moment!

Create your own characters!

The Spectrum offers another way of producing graphics, however.
These are still ‘low resolution’ in the sense that they use the same
PRINT positions on the screen, but they offer much more scope for
dazzling effects. As this title suggests, we can create our own
character shapes. There are three parts to this - the planning of the
shapes, the instructions to the Spectrum about the shapes, and finally
how we place the shapes on the screen. Let’s take these three in easy
stages.

We'll start, logically enough, with planning. The size of the shape
we're talking about is one screen character, the size of the cursor
block. Now this, and every other Spectrum character, is made out of
64 dots that are arranged on an 8 by 8 grid. Figure 7.10 shows the
shape of this grid - you can re-draw it for yourself on a sheet of graph

128664 3216 8 4 2 1

Fig. 7.10. The planning grid for designing your own characters.

paper if you want more copies. The important point is that the small
squares of the grid represent positions that can be in either INK or
PAPER colour, according to the value of code numbers that we use
to instruct the computer.

Special Effects 75

Now the Spectrum Manual shows you one way to design these
shapes and, just for the sake of choice, I'll show you another method.
The key to it is the numbers that are printed on top of each column of
squares. Each number is a code for the square it's over. Use the
number, and the square will be in INK colour. Use §) instead, and the
square is in PAPER colour, which means invisible. An example will
help to make this clearer, and it appears in Fig. 7.11. I've used a
simple shape to illustrate the principle.

g B L oo~
128 0
64
32+4=36

16+8=24 | numbersto be poked
16+8=24 into memory

32+4=36
2

1 J

Fig. 7.11. An example of planning a shape on the grid.

The first line of squares has just one square shaded in. I usually
work on tracing paper clipped over the grid pattern, but in this
example, I've shown what it will look like on the graph paper itself.
The shaded square in the top line is the one we want to appear in INK
colour, and it’s under the code number 128. There’s nothing else
shaded in this line, so 128 is the number we note at the side. Similarly,
in the second line down, the square in the ‘64’ position is shaded, and
so that’s the number we use. The third line, however, has two squares
shaded. We deal with this very simply - we just add the code numbers
for the shaded squares. 32 plus 4 makes 36, and that’s the code
number that will indicate to your Spectrum that both of these squares
are to be in INK colour. The fourth line also has two squares shaded
and, here again, we add the code numbers. We continue in this way
until all the eight lines have been dealt with.

There are a few points to note. One is that if none of the squaresina
line is shaded, the code number is zero. The other point is that you can
save a lot of arithmetic by remembering that a complete set of shaded
squares in a line adds up to 255. This is the maximum size of number
that you can use as a code number. You must always end up with
eight numbers, no matter what shape you are trying to produce.

I|"“

76 The ZX Spectrum

The next matter is how we instruct the computer to produce the
shape. What we have to do is to store the code numbers in the
Spectrum’s memory, along with a letter name that we use to obtain
the shape on the screen. This makes use of two new instructions,
POKE and USR. POKE has to be followed by two numbers. The first
number is a reference number for a unit of memory (an address
number). The second number is the code that we want to have stored
there. The effect of POKE is therefore to place the code number into
the memory. USR, when we use it in this way, is a method of
identifying units of memory without having to search for them
ourselves. We use it along with a letter to choose a part of memory
that will be used when we use that letter.

Yes, an example will make it a lot easier. Figure 7.12shows how the
shape that was designed in Fig. 7.11 is put into the memory. AREAD

19 CLS : FOR J=B 7TQ 7
20 RERD k: PORE USR "a“+4j,k: N
EXT J
3@ PRINT '"W*

40 PRAUSE 1%58: CLS

S8 BORDER 9: PRAPER 1: INK 7

6@ FOR %:1 TO 21

7@ PRIN AT Jj.22-j;"%": PRAUSE
1®d: PRINT AT j.,22-j;" ": PAUSE 1

®
83 NEXT 4
180 DATA 128,64 ,36,24,24,36,2,1

Fig. 7.12. Storing the code numbers for a shape into the memory. The shape that
is shown in line 3@ was produced by going to graphics mode and then pressing
the "A’ key. After this program has been run, the shape will replace the ‘A’
instruction is used to get the code numbers in order (top line to
bottom line) from the DATA list. The letter we have selected to use is
‘a’, and by the choice of USR “a” + j, we ensure that each code is put
into a different part of memory. Spectrum allows you to use the
letters a to u inclusive for these special characters, so you have plenty
of choice, Note that using values of j from §) to 7 gives us eight values,
equal to the number of codes we want to place in memory.

The last item is how we ensure that this will appear on the screen.
Line 30 is the clue here, but all is not what it seems. The PRINT and
the quote have been produced in the normal way, but the graphics
shape that you see in the listing does nor appear when you type the
program. It is really a letter A! When I typed the A, 1 had entered
graphics mode by pressing CAPS SHIFT and 9 together. What
appears on the screen when you do this at first is the letter A, but what

I R R R R R R ORI BT,

Special Effects 77

is going to appear is our shape! What’s more, after the program has
been run, pressing the ‘A’ key in graphics mode will produce the
shape, and it will also appear in the listing. That’s why it’s the shape
you see in line 39 of Fig. 7.12, rather than ‘A’. Like every other
program listing in this book, I typed the program, tested it, printed it
on the ZX printer, and recorded it.

Now we have the character, what do we do with it? Lines 40 to 8¢
show an attempt at animation. The technique is similar to the method
that we used before, but the values that are used in the PRINT AT
have been chosen to cause diagonal movement. The other point is
that the ‘wiping’ action is done by printing a blank. If you try to print
the shape again in PAPER colour, you will get an unexpected effect!
This is due to the fact that INK affects the whole 64 dots of a shape.

It’s still not a satisfactory animation, so let’s look briefly at a dodge
which can improve things for simple shapes. Figure 7.13 shows a
shape which we allocate to ‘a’, and the same shape in two halves which
are allocated to ‘b’ and to ‘c’. When we put this on the screen (see Fig.
7.14 for the program) we start with ‘a’ shape. We then wipe this, and

24
24
24
24
60
126
258
285
shape (a)
| g 60
0 126
0 255
0 288
24 (]
24 @
24 1}
24 @
shape (b) shape (c)

Fig. 7.13. A way of getting more convincing animation.

78 The ZX Spectrum

19 CLS : FOR =@ TD 7 REHD k

28 POKE USSR "B"-I-J sk NEXT

3m FOR =@ TO ?: RERD ke PUKE
USR "b"+J,k: NEX

40 FOR J=9 TO ?: REHD K2 POGRE
UsH "c"+i,k: NEXT i

5@ BORDER @: PRPER 1: INK 4: C

LS
6@ FOR =21 TD 1 STER =1
78 PRINT AT 16; "A": PRUSE 2
8@ PRINT AT J . a.ﬁ, : PAUSE 2
a2 PRINT RT’ Z1,18;"B";AT J.16
3 'CY: PRAUSE ;
io@ PRINT FIT d=-3;165 " VINT J. 30

USE
‘1108 NEXT
ggg DATAH éd- 24,24 ,24 ,60,126,255

510 DATA @.,0 24,24 ,24 ,24
S2® DATA 6@, 124 éss,ess 2.0,8,0
508 GO TO 9939

Fig. 7.14. The program for Fig. 7.13.

then print the ‘b’ shape on the next line up. This is the nose of the
rocket, but appeanng on the bottom half of a character position.
Below it we print ‘c’, which is the tail of the rocket, placed at the top
half of the character position. The effect is as if we had printed the
rocket shifted half a character space up! Now, when we animate this,
it looks decidedly better. It would look ever better if we could use
quarter shapes, but that’s hard work. As you'll find, good displays
always are - and that's why good games programmers can €arn so
much!

Chapter 8
High Resolution Graphics

High resolution graphics means picture patterns that are created with
smaller units than are possible with the text size of characters. The
Spectrum allows you to use high resolution graphics instructions
which operate with a different screen plotting. This high resolution
grid is of 256 points across the screen and 176 vertically. The picture
elements in this grid are called pixels, and with 256 across and 176
down, that makes 256176 =45056 pixels. Fortunately, you don’t
have to write programs that control each one of these pixels
individually!

As always, working with high resolution graphics involves
planning, and we need a planning grid. Figure 8.1 shows such a grid,
with the boxes numbered in a way that is needed for Spectrum. The
numbers across the grid run from @ to 255, and the numbers up the
screen run from @ to 175. These are the numbers that we must use in
our high resolution graphics commands. Notice that there is one very
important difference between the numbering of the high resolution
positions and the more familiar PRINT AT numbers. The starting
point for PRINT AT is the top left-hand corner of the screen. The
high resolution instructions, however, use a starting point at the
bottom left-hand corner of the screen. This makes the use of high
resolution graphics rather like the use of graph paper, and it also
makes planning easy for anyone who has ever plotted graphs.

The Spectrum plot

PLOT is the first of the high resolution graphics instructions we have
to look at. PLOT means the same as it means to anyone who is
drawing a graph - put a point on the graph. PLOT has to be followed
by two numbers. The first of these numbers is the ‘x’ number. This is

80 The ZX Spectrum

-1 i

8s
1L
8L
18
g6
£01
il
611
121
gel
£bl
181
8s1

S

91

EL1

U/
1

18

23
31

39

47

55

63
71

79

87

95

193
111

119

127

oL

135

143#

151

159
167]

78
[

1
191

18!
207

218

223

231

239
241

285

Right
Fig. 8.1. The planning grid for high resolution graphics.

the number of pixels across the screen, starting with the left-hand side
at x=f. The second number is the y number. This is the number of
pixel places up the screen, starting with the bottom at y=0. The effect
of PLOT 128,88 then, would be to light up a dot at the centre of the
screen in whatever INK colour you happen to be using. Try it, and see
just how small these pixels are compared to the character positions

that we have been using.

Now we can use PLOT by itself to create some interesting effects,

High Resolution Graphics 81

but the snag about them is that they depend rather heavily on
mathematics. It’s rather difficult, then, to devise your own original
patterns unless your mathematics is up to scratch. You can, however,
try out some examples to see how PLOT operates, so we’ll start with
Fig. 8.2. What we are doing here is to vary a quantity ‘t’, and plot two

CLS
S8 Eor 128°7o"ETe%51E
= 5.6 5T =
4@ PLOT v*t,l?@—git'tgsa x

5@ NEXT t
Fig. 8.2. Using the PLOT instruction, which prints a dot on the screen.

expressions that involve the use of ‘t’. The x number in the PLOT is
v*t, and the y number is 17¢-g*t12/2. If you have dabbled in more
advanced maths or physics, you'll possibly recognise these expres-
sions. The x one gives the distance travelled by an object that
has been shot horizontally. The y expression gives the position of an
object falling and accelerated by the Earth’s gravity. The result of
plotting these two is to show the path of something shot horizontally.

The trouble with comparatively simple expressions is that they just
don’t give such interesting patterns, though they are very handy if you
want to plot instant graphs. To get the patterns that look really
impressive, you have to use rather complicated expressions. There’s
another penalty to pay, too. These patterns take a long time to draw,
This is because each point is having to be plotted separately, and
that's a long business! Figure 8.3 shows the type of pattern that can be
obtained with a lot of trial and error and a fairamount of patience. It

Lsila BORDER B: PRAPER 1: INK &: C
20 FOR t=0 TO S STEP .2
3@ FOR s=@ TO S5 STEP .2
4@ PLOT 24B:x5SIN s+C05 (,.50% (CD
S 54+451IN L)
58 MNEXT s: NEXT t

Fig. 8.3. Building up a pattern using PLOT. These patterns take a long time to
create, so you might like to save them using the SAVE type of instructions
illustrated at the bottom of page 144 of the Spectrum Manual.

takes a long time to build up the complete pattern, so don't lose
patience, wait until the ‘9 OK, 50:2' message is visible at the bottom
line of the screen.

82 The ZX Spectrum

Time to draw the line

PLOT is used, apart from its applications in graph drawing, as a
method of getting to a position on the screen. We talk of PLOT as
‘moving the graphics cursor’, meaning that it putsa dot at any part of
the screen we want, and that we can then draw a pattern starting at
that point. The instruction that we need to draw a line starting froma
position that has been established by the PLOT instruction, is
DRAW.

DRAW, followed by two numbers, will draw a straight line. The
two numbers are x and y distances, respectively, but these are not
used in the same way as PLOT numbers, PLOT uses what are called
absolute co-ordinates, meaning the x and y numbers measured from
the point at the bottom left-hand corner of the screen. DRAW, by
contrast, uses numbers which represent the change from the previous
position of the graphics cursor. For example, if we have used PLOT
128,88 to put the graphics cursor at the centre of the screen, then
DRAW 19,5 willdraw a line from 128,88 to 138,93 (add 1 tox,add 5
to y). If we had used DRAW —5,—1§, then the line would have been
drawn from 128,88 to 123,78 instead. The numbers that follow
DRAW can be positive or negative, unlike the numbers that follow
PLOT.

How do we set about drawing with the DRAW instruction, then?
The easiest way to demonstrate this is with an example. As always,
planning is the key to successful drawing, so we start with a simple
geometrical pattern, drawn over the planning grid of Fig. 8.1. This
star pattern is shown in Fig. 8.4(a). On this diagram, the absolute x
and y numbers have been written at every place where a line changes
direction. That’s step | in planning a pattern. Step 2 is to choose a
starting point. What you choose is a matter of convenience, and if you
don’t intend to move the pattern around, it doesn’t much matter. I
have picked the starting point of 130,39 for this pattern.

Once this has been done, the rest is more or less plain sailing. We
can write the program lines, as Fig. 8.4(b) illustrates. Line 1f) sets up
the colours, and line 2§ places the cursor at the chosen starting point
of 130,30 The rest of the drawing consists of reading values of x and
y from a DATA line, and using the DRAW instruction to create the
line. Starting at 13¢,3@, and with the next change of direction at
149,80, the difference values are 1§,50. These are the values that must
be placed in the DATA line, and when the line to 140,80 has been
drawn, the next point at 199,90 is a change of 50,1¢. Eight sets of

High Resolution Graphics 83

130,150

190,99

(a)
130,30

LS:LG EORDER @: PRPER 4: INK 1: C
20 PLOT 13@,39: FOR n=1 TO 8
30 READ x,4Y: PRAW xX,9: NEXT n
1@@ DHTH 13:5815@:1‘3:"591 193‘1@

(b) 6594 -1i@,-%0, -5, -1@.5e,-18, 18, -5

Fig. 8.4. 1a) A star pattern, showing its X and Y numbers and (b) the program for
drawing the pattern.

points are needed to get back to the starting position, so the FOR...
NEXT loop uses a final value of 8.

With that simple example out of the way, try something more
advanced. Figure 8.5 shows a shape, along with its co-ordinate
values, for which we can calculate DRAW numbers. The program
which will draw this is in Fig. 8.6. Once again, I have selected a
starting position - in this case, the bottom left-hand corner of the
shape. The program therefore starts with PLOT 6,60 to get the
cursor to this position. The next instruction, however, is RESTORE
1pPP. This ensures that when DATA is read, it will come from line
1pPP. This is not strictly necessary, since the program will go
automatically to this line, but it introduces the idea that we can read
data starting at any line we like. This is going to be useful!

Line 30 draws the first eighteen lines of the drawing. These take the
cursor to the position 85,155, ready to draw the next tower. At this
point, however, we can use a bit of cunning, because the instructions
that we need to draw one tower must be the same as the instructions
that we used to draw the other one. Only the starting point is
different, and we’re there already. If we put the DRAW numbers for

84 The ZX Spectrum

120.:165>_ 175,155
135,163]
60,155 85,155 _ﬂsl‘_}_
5
120,130 {|121,130
85,130 150,130
75,100 180,100 155,100 160,100
75,80 |__189,80 120,80 155,80| _[160.80
110,80 130,80
60,60 110,60 120,60 130,60 175,60

Fig. 8.5. Another shape planned on the high resolution grid, with X and Y
numbers shown.

1@ BORDER @: PAPER 3: INK 7: C

=
20 PLOT ©6@,6@: RESTORE l1aaa
RUSB FOR n=1 TO 18: RERD X ,Y: DR

X
40 ' MEXT n: RESTORE 1@1@d: FOR n
=1

TO 9
S@ REPAD X ,Y: DRAW X ,4: MEXT n:
DRAW @, -9S

60 PLOT 129,5@: DRRW B,2@

78 PLOT 12@,132: DRAW @& ,35: DR
AY 15, -3: DRAY -14,-3

8@ DRAW @,~-29: PLOT 75.i1ad@: GO
eSUB S98: PLOT 1ISE,18B: 0 SUB8 S
85 GO TO 9999

S@ RESTORE 183@: FOR n=1 TO 4:
READ X ,4: DRRAW M ,4Y: NEXT n
S8@ RESTORE 1&8383: FOR n=1 TOQ 4:
READ X ,4: DRAW X ,y: NEXT n: RET

URN

1000 CATA S0,8,3,20,22,2,8, -2

?é?éaégs s 1 ! ’ ¥l '3 ' B '4
ATA -5,0,8,-5,-5,2,8,5, -5

?ég,-s,ws,@,é,é,is,é Sy e

@ DATA @, -25. -65,0,@,25
1232 DATR S5,@,8, -20.,-5,0.0,20

Fig. 8.6. The program for drawing the shape of Fig. 8.5 on the screen.

High Resolution Graphics 86

the crinkly top of the tower into a separate line of DATA, we can read
it again. I shall put these instructions into line 1010, so by using
RESTORE 191§ in line 40, I can read them again. There are nine of
them, so the next loop in lines 40 and 50 deals with them, and the final
DRAW instruction in line 5¢ draws the left-hand wall of the castle.

We then have to put in the flagpole, flag and windows. Lines 6§
and 7 deal with flagpole and flag, and we can use a bit of repetition
once again for the windows, Since the windows are the same shape,
we can put their DRAW numbers into one DATA line (1030) and use
it twice, This is done by using a subroutine at line 500 to draw the
window shape. All that the main program has to do, in line 80, is to
plot the starting points and call the subroutine. The pattern is drawn
impressively quickly, and it’s particularly gratifying to see the detail,
like the flag, appearing. Try some of these straight-line patterns for
yourself?!

Twinkle, twinkle ...?

The rate of drawing is not quite fast enough, however, if we want to
go in for fast animation. As an example, take a look at Fig. 8.7. This

Lsila E0RDER ®: PARAPER 8: INK 6&: C
102 PLOT 120,5@: RESTORE 1008

GO SUEB S28
11@ PLOT 128,50: RESTORE 1600:
G0 SUE 6006
GéEgUPLQT 129 ,80: RESTORE 10108:
138 PLOT 1206,80: RESTORE 1010
GO SUE 608

142 GO TO 120
S@@ FOR n=1 T2 &: READ x.y: DRA
: URN

W X,4: NEXT n: RET
60@ FOR n=1 TO &: READ x.u: DRA
LW OUER 1 X : NEXT n: RETURN

100® DATA 10,4@,40,10,-40, 19, -10
440, -10.-43, 40, -18, ,40,-10,16, -4

181@ DATA 5,15,15,5,-15,5,-5,15,
"-5;“15;"15;"5;15;‘5) _1‘

Fig. 8.7. Attempting animation - first try.

‘time, 1 have shown only the program, not the planning stages. The
two DATA lines contain the DR AW numbers for drawing two stars —
one large, the other small. The aim of the program isto draw the large
star, then wipe it out, then draw the small one, wipe it in turn and

86 The ZX Spectrum

return to drawing the large star again. If this can be done quickly, it
will produce a twinkle, twinkle, little star effect.

The program uses two subroutines. The subroutine in line SP@ is
used to draw a star shape. Since both stars use eight DRAW
instructions, the loop of 1 to 8 will suffice for each, and we only have
to change the RESTORE instructions to cause the correct set of
DATA to be read. Line 6@ looks identical, but contains an
important difference. Between the DRAW and the x,y parts of the
instruction we have OVER 1. The effect of OVER I isto wipe out the
line. By re-drawing the lines with OVER | it's as if we went over the
lines with an eraser. Line 19 draws the large star, and line 11§} erases
it. Line 12 then draws the small star and line 130} erases it. Line 149
then causes the whole business to be repeated until you press the
CAPS SHIFT and SPACE keys together to break the loop.

Now it twinkles, but not fast enough. You can see the star being
drawn and erased again, instead of appearing and disappearing as we
would like. Part of the problem is an optical illusion. Our eyes can see
the anticlockwise rotation, and if we draw the stars in a different way,
the effect of drawing and undrawing is not nearly so noticeable.

1@ BORDER ©: PAPER ©: INK 6: C

2@ PLOT 120,15@: DRAW 10, -4@:
DRAY 40, -18: DRAW -40,-18: DRAU
D —40. PLOT 120,150: DRAW -10,
Ci0! DRAW -40,-10° DRAW 408,-10:

3@ CLS : GO TO 20

Fig. 8.8. Improving animation by a different approach (just one star this time).

Figure 8.8 indicates how the appearance can be improved. There is
just one size of star this time. It is drawn in two sections, with the
direction of drawing opposite in each section. The star is erased by a
CLS instruction rather than by the use of OVER 1, and we could
draw a smaller star if we liked before clearing and repeating the large
star.

Moving in another sector

The DRAW instruction can be followed by three numbers instead of
two. When this is done, the line that is drawn is not straight, but is
part of a circle! The way in which the numbers are used appears quite
straightforward. The first two numbers, as before, specify the

High Resolution Graphics 87

distance between the points at the ends of the line. The third number
specifies the angle through which the line turns to make a part of a
circle. The first snag that you encounter when you start to use this
instruction is that the angle isn't measured in degrees, but in radians.
There are 2*pi(2) radians to a complete circle of 360 degrees, and a
right angle (90°) is pi/2 radians. As it happens, though, most of the
parts of circles that we want will be semicircles (angle pi) or quarter
circles (angle pi/2). What takes a lot of practice and planning is
deciding what figures have to be used along with DRAW to produce

the results that we need. As usual, an example tells you a lot more
than instructions.

(a) ; 120,160

130,80

130,49
/140,30
/169,30
]

160,25

BORDER ®: PARAPER @: INK 7: C

S0,160@

@, -5
36,—ea,p1/a

-i0,-10,-PI/2
-20,@: DRAW @, -5: DRAW
DRAW ©,5: DRAW -20,0
DRAW -19,1@.-PIs2
12@ DRAV 2,40
119 DRAU 50,20.PI/2
120 DRAW 2,50
13@ DRAW 16, 1@6—91

14© FOR X"QS it 1"’»5 STEP 5: PLO
T INK 6:x.150: NE

Fig. 8.9. (a) Another pattern drawn over the planning grid. This one uses partial
circles. (b) The program for drawing the pattern.

88 The ZX Spectrum

Figure 8.9 shows a pattern that has been drawn, as usual, over the
planning grid. The points where the lines change directions have been
drawn in, so that all we need are a PLOT of the starting position, and
DRAW instructions to complete the rest of the pattern. The part-
circles are all obtained by using right angles (pi/2 radians), but some
of them turn clockwise, and the others anticlockwise. The difference
is programmed by using a negative sign for the clockwise turning,
positive (or no sign) for anticlockwise. Each DRAW instruction then
uses the x and y numbers that have been obtained in the usual way, by
subtracting the x and y co-ordinates for the two positions, plus the
pi/2 angle, positive or negative. Try the program - line 14 puts a
liquid level in the glass!

Moving in better circles!

Using the third part of DRAW can be useful for making portions of
circles, but the CIRCLE instruction is more convenient if we want to
place complete circles into a drawing. CIRCLE needs three numbers
following it. Of these, the first two are the x and y position numbers
for the centre of the circle, and the third number is the radius. The x
and y numbers are the numbers that you would use along with PLOT,
and you will have to choose the radius number fairly carefully. The
radius of a circle is the distance from the centre to the edge, and if you
choose a number for the radius so that the line disappears off the edge
of the screen, the program will stop with an error message: ‘5 Integer
out of range’. This means that the value of radius that you have
picked has been one that would place part of the circle outside the
limits of the screen. To test your chosen radius, add it to the x and the
y values of the starting position. If the x plus radius number is less
than 256, and the y plus radius number is less than 176, all is well.
Now subtract the radius number from the x and y starting numbers. If
x minus radius is more than zero, all is well. If the y minus radius
number is more than zero, again, all is well. If you find ‘illegal’ values,
however, you will have to change the radius number, or shift the
centre of the circle by using other x and y numbers.
1@ BORDER &: PAPER 6: INK 1: C
LSQ@ FOR r=1 TO 8@ STEFP 4

3@ CIRCLE 128,88,r
4@ NEXT r

Fig. 8.10. Using the CIRCLE instruction.

High Resolution Graphics 89

Figure 8.10 illustrates circles drawn by the use of this instruction.
When colours are used, you will find some odd mixing of PAPER
and INK colours at parts of the circle. This is most noticeable when a
set of circles are drawn using the same centre. If you omit the STEP
part of the program, you will see an almost solid circle being drawn,
with the colour changes rather obvious.

Being able to use circles greatly enhances our ability to produce
interesting shapes, so we can now start to flex our muscles a bit.

START 16,150

NG

Fig. 8.11. A more elaborate shape which uses all of the drawing instructions.

Figure 8.11 shows a plan for a shape that is more elaborate than any
we have tried so far. This combines the use of all of the graphics
instructions, and it illustrates the CIRCLE instruction being used ina
drawing. As usual, the planning stage of the program is the most
important, and you should mark in the co-ordinates of all the places
where lines change direction. The important point about planning a
drawing of this kind is that it shows up where instructions are
repeated, so that we can save a lot of programming by using loops. In
this example, the wheel-arches and the wheels are shapes which
repeat three times, so we should be able to use a loop to create each of
these.

As usual, we pick a starting point. 1 have picked the top left-hand
corner of the drawing, because it’s the point nearest to the edge of the
screen. From this point, eight straight lines are used to draw as far as
the start of the first wheel arch. The DATA (Fig. 8.12) for this part of
the drawing is put into line 1#09. You can enter lines 19, 20, and part
of 3 by themselves, along with line 1§, just to test that this part has
been done according to plan. That, in fact, is what 1 did. It’s useful to

90 The ZX Spectrum

18 BORDER &: PRAPER 6: INK 1:

2@ PLOT 15,182: FOR n=1 70O 8
@ RERAD X, 'g : DRAW X ,49: MNEXT n:
FOR n=1 TO &

4@ DRAW 4@,0,-PI: DRAW 18,8: N

T n
S@ FOR n=1 TO 4: READ %,v4: DRA
U X,4: NEXT n

6@ DRAW 1@,10,-PI/2: DRAW -38,
0 B DRAU G, —Sa: DRAW 2

- & - 7 r

v -30.8,PI i B
- 8@ FOR n=1 TO 7: READ X.Y: DRA

- >, e
990 FOR x=80 TO 18@ STEP G
1@@ CIRCLE x,5@,18: NEXT X
112 PLOT 82.40: DRAW 10@,@: DRA
W e,-2: DRAW -18@,2: DRAU oles
128 RESTORE 1@3@: PLOT 22@,148:

FOR nNn=1 TO 3: RERD %,y .r: DRAL
X,48,r: NEXT n
%gg §E§T$gEqiaggaDPLOT 293614-G;
= =02 x !] i
OUVER 1;X,4,r: MNEXT n A i
142 GO TOC i2@
1000 DRATA @,-192,15,0,0,-82, -1, @
1018’ BATA 18’ éaaige 10,@,
i 2,1
1920 DATA -55,0.0,5,-5,0,0, -5, -1
05250540, -45,9 e,
- @,-PI,10,0, - -
18, -PI ! i

Fig. 8.12. The loco-drawing program.

build up a large drawing in stages like this, because you can then sort
it out in stages. If youattempt too much ata time, you'll usually find it
much more difficult to sort out if there has been a mlstake
somewhere.

The next part of the drawing is the wheel arches. Since there are
three identical units, we can use a loop, and this begins in the last part
of line 3. The DRAW instructions are identical for each wheel arch,
and these are contained in line 40. The next part of straight line
drawing then goes as far as the smoke-stack, just at the point where it
is flared. Line 60 deals with the top of the smoke-stack, and line 7
draws as far as the dome. The rest of the main shape consists of
straight lines, and it is drawn by another loop in line 8.

With the outline drawn, details can then be filled in. Lines 99 and
1§00 draw the wheels, using a CIRCLE instruction placed within a
loop. The only value which changes from one pass of the loop to the

High Resolution Graphics 91

next is the x value of the centre of each wheel. Line 11§ then draws the
connecting rod. Just to add a flourish, lines 12§ and 13¢) produce a
wisp of smoke which is alternately drawn and erased to give the
impression of our locomotive lightly steaming along.

Now for your turn! Can you add some embellishments to this? You
will have to place them between lines 11 and 120}, so you might want
to change the numbers of lines 120, 13p) and 14 (and the GOTO in
line 14) to make more space. The sort of thing you might want to
add would be a driver’s window, front buffers, and anything else you
can think of. The more you can successfully add in this way, the more
confidence you will have in using the high resolution instructions of
your Spectrum.

Amazing activity

There are two instructions | have left until last in this chapter, POINT
and ATTR. The reason is that they don’t place anything on the
screen. What they do is to analyse what is already on the screen, and
this is a very valuable activity. If you have a high resolution graphics
program, for example, that depends on moving some object across
the screen, it’s very handy to be able to tell when it comes up against a
‘barrier’. POINT is the main instruction that we can use for this bit of
diagnosis. Take a look at the program in Fig. 8.13. This starts in line

le@ BORDER @: PAPER 6: IMNK 2:

28 PLOT 18,1@¢: DRAWU A, Il1se: PL
T 249,10: DRAU @, 168
30 LET 2=1R8: LET uy=088: LET k=

4@ PLOT Xx,4: PRAUSE S5: PLQOT OQUE
R 1;X,4Y: LET X=xX+k: IF POINT {x+
K.,uyl=1 THEN LET k=-k

58 GO TO 4@

Fig. 8.13. Using POINT to detect a barrier.

G 0

2§ by drawing two vertical lines in INK colour, one at each side of the
screen. Line 3 then sets the position of a dot which is printed on the
screen by the PLOT instruction at the start of line 4)). After a short
pause, this point is wiped out by using OVER 1, and the value of x is
changed. Since k is defined as I in line 3(), the change is from x=128
to x=129. At this place, we check to find what the next point on the
screen looks like. POINT(x+k,y) will have a value of @ if the next
place along is in PAPER colour. If the next place along is in INK

92 The ZX Spectrum

colour, then the value of POINT is 1. Since the only places on the
path that are in INK colour are the ‘walls’, then this will operate only
when the dot is one space away from a wall. When this happens, the
value of k js changed to—k. If, for example, x has the value of 239, and
kis 1, POINT(x+k.,y) will give 1, and k becomes—k. The next time we
use LET x=x-+k, with x=239, the value of x will become 238, not
240. This is what moves the dot back across the screen when it has
*hit” one wall. At the left-hand side, the value will again reverse before
the “wall’ is struck. If, incidentally, we let the value of x get to the value
that it has at the wall position, the wall will show a gap when the dot
moves away. This is because of the OVER [action, and it’s useful if
you want to break through walls.

The type of action that was used in Fig. 8.13, however, is more
useful for bouncing objects, finding a way through a maze, and other
non-destructive activities. POINT is the instruction that is always
used along with high resolution graphics instructions. There is
another instruction, however, in the shape of ATTR, which we use
for low resolution displays. ATTR has to be followed by the two
numbers, within brackets, that we would use in a PRINT AT
instruction. The number that we obtain will reveal the INK and
PAPER colours, and whether flashing and bright text has been
commanded for that character position. Since ATTR does not work
with the high resolution points, however, we won't devote further
space to it here,

Chapter 9
Sound Sense

The ability to produce sound is an essential feature of all modern
computers. The sound of the Spectrum comes from a very small
loudspeaker, however, and is not particularly easy to hear. The
version of the Spectrum available in the United States uses a sound
system which gives considerably greater volume.

To start with, we can operate on the sound that we get when we
press a key. This is controlled by a number contained in the memory
of the Spectrum. When we switch the Spectrum on, this part of
memory is set with the values that will normally be used. We can alter
these values, however, by using the instruction called POKE. POKE,
which we have come across before in connection with do-it-yourself
character shapes, has to be followed by two numbers. The first of
these numbers is the address number of the memory that we want to
change. The second number is the new amount we want to store at
that address. This second number must be a whole number that lies
between @) and 255, inclusive. As far as the sound of the key-click is
concerned, the memory address number is 23609. If you type:

POKE 236§9,10¢

and then press ENTER, you will find from then on all your key-
presses are marked by a more noticeable sound. It’s a great
improvement on the very soft click that is the normal sound.

The wild waves

What we call sound is the result of rapid changes of the pressure of the
air round our ears. We don’t notice these pressure changes unless they
are fairly fast, and we measure the rate in terms of cycles per second,
or hertz. A cycle of a wave is a set of changes, first in one direction,

94 The ZX Spectrum

then in the other and back to normal, which we can illustrate by the
graphs in Fig. 9.1. The reason that we talk about a sound ‘wave’ is
because the shape of this graph is a wave shape.

Number ol waves in 1 second

= trequency

Amplitude

Fig. 9.1. Graphs showing a sound ‘'wave’, illustrating amplitude and frequency.

The frequency of sound is its number of hertz - the number of
cycles of changing air pressure per second. If this amount is less than
about 20 hertz, we simply can’t hear it, though it can still have
disturbing effects. We can hear the effect of pressure waves in the air
at frequencies above 20 hertz, going up to about 15,000 hertz. The
frequency of the waves corresponds to what we sense as the pitch of a
note. A low frequency of 80 to 120 hertz corresponds to a low pitch
bass note. A frequency of 400 or above corresponds to a high pitch
treble note.

The amount of pressure change determines what we call the
loudness of a note. This is measured in terms of amplitude, which is
the maximum change of pressure of the air from its normal value. For
complete control over the generation of sound, we need to be able to
specify the amplitude, frequency, shape of wave, and also the way
that the amplitude of the note changes during the time when it
sounds.

The Spectrum sound system is a simple one, and the notes from it
have fixed amplitude. As [mentioned earlier, this amplitude is very
low, and you may not hear the notes if there is any other sound in the
same room. The electrical version of the sound signal, however, is
sent out from the two cassette leads. If you connect either cassette
lead to a hi-fi amplifier (or a lo-fi one, as you please!), then you can
obtain the sounds of the Spectrum at any volume you like to use.

Sound Sense 95

A touch of beep-bop

The Spectrum sound instruction is called BEEP, and it has to be
followed by two numbers. Of these, the first number is a duration
number. 1t is the number of seconds for which the note will sound.
Spectrum allows the use of fractions as well as whole numbers, so this
instruction does not confine you to notes of one second or longer. The
second number is for the frequency of the sound. We don’t use the
actual frequency numbers, which would be rather too much to type,
but numbers that provide a usable set of values.

What constitutes a useful set of values? The answer is a set based on
the piano keyboard. The piano is the most familiar type of musical
instrument, and its keyboard is set out so as to make it very easy to
play one particular series of notes, called the ‘scale of C Major".
Figure 9.2 will show you what the Spectrum makes of this scale. The
scale starts on a note that is called Middle C, and ends on a note thatis
also called C, but which is the eighth note above middle C. A group of
eight notes like this is called an ocrave, so that the note you end with
in Fig, 9.2 is the C which is one octave above Middle C.

1@ CLS : PRINT TRAB 14 "BEEP”
28 FOR n=1 TO 8

38 READ k: BEEP 1,k: NEXT n
19@ DATA ©®,2,4,5,7,9,11,12

Fig. 9.2. A 'scale of C Major’ program, using BEEP.

Middie C

Fig. 9.3. The piano keys with the notes printed.

The appearance of these keys on the piano keyboard is illustrated
in Fig. 9.3. Middle C is, logically enough, at the centre of the
keyboard, and we move right for higher notes, left for lower notes.
One of the complications of music, however, is that the f requencies of
the notes of a scale are not evenly spaced out. The ‘normal’ full
spacing is called a rone and the smaller spacing is called a semitone.

Spectrum allows the use of both negative and fractional numbers
for its ‘pitch’ numbers in the BEEP instruction. This allows us to
produce notes which the piano cannot play, and which can only
normally be produced by instruments like the violin. More important

96 The ZX Spectrum

for us, however, is the fact that the BEEP method of controlling the
sound allows us to produce some sound effects which are very useful
as reminders, or in games. If you want to zap a Klingon, phaze a
Martian, ar make a small frog go splat on a motorway, then some sort
of sound for the occasion can be generated by the BEEP instruction.
It's never going to be the sort of impressive sound effects that some
other computers can generate, but it’s simple to work with.

Let’s start with a rising pitch of note which makes a useful warning,
or a ‘something about to happen’ note. This is illustrated in Fig. 9.4,

%B CLS : PRINT TARB 10;“Rising

note”

20 FOR n=-1© TO +1@ STEP .2
a3 BEEP .@2,n: NEXT n

Fig. 9.4. Programming for a rising pitch note.

The loop that starts in line 2 uses values of n that range from —~1pto
+1¢ in steps of .2. These are the numbers that we shall use as
frequency numbers in the BEEP instruction in line 3. The changes
will take rather a long time unless we use a fairly short time for the
note, and the figure of .5 has been carefully chosen. This time is
critical. If you make it too long, the sound will be just a set of separate
notes. If you make it too short, the notes sound too much like clicks to
make an interesting sound effect. This one, like most of the sound
signals that we shall be looking at in this chapter, sounds better on a
hi-fi system.
12 CLS : PRINT TRB 13;"Wacrbla®

28 FOR n=1 TO SB: BEEP .05.8

Fig. 9.5. A warbling note program,

Figure 9.5 shows a program that produces a warbling note. This is
particularly useful for attracting attention, or for announcing an
event in a game. For some reason, a warbling note attracts our
attention more than a single note, which is why a warbling note was
chosen for the later types of telephones. The warble in this program
uses the loop in line 2f). This sounds 50 notes, which are short with a
duration number of .05. The two pitch numbers that have been
chosen in this example are 8 and 9. Higher pitches are even more
effective, and values like 25,26 give effective attention-getting
warbles.

Sound Sense 97

Another way of getting attention is the sound of two notes of very
different pitch. The combination of one high note and one low note
sounded alternately can be a very effective way of attracting notice,
and this is illustrated in Fig. 9.6. The notes that are used have the
frequency numbers of 1 and 20. This is the sort of separation that is
needed if the method is to sound effective. Try also a pair of warbling
notes, one at 1 and 1.5 pitch numbers, the other at 25 and 26.

1@ CLS : F‘RINT TAB 13; "Hi-Lo”
2@ FOR n=1 S: BEEP .@S,1: B
EEFP .05,20: NE)(T n

Fig. 9.6. Sounding high and low notes alternately.

Sometimes, just a few notes of music can convey a useful message
(what did we do before Colonel Bogey was composed?). Figure 9.7
shows how a short music message can be used to signify the loss of a
game. There’s a rich choice here, because many pieces of music are
associated with moods, feelings, and plain insults! If you want to use
music in your programs, however, you need to be able to read music.

.10 CLS ; PRINT TAB 11;"Beat 4o
U! e .

20 BEEP 1,7: BEEP 1,9: BEEF 1,
7: BEEP 2,18

Fig. 9.7. A short musical message.

18 CLS : PRINT THRE 10; “Random
Eound®™

20 FOR n=1 TO 56

38 LET [i=2%RNHD: LET p=20:xRND

48 BEEP j.,pP: NEXT n

Fig. 9.8. A ‘random music’ program.

Finally, take a look at Fig. 9.8. This is a program which composes
music. It may not sound like music to you, but to my ear it’s as good
as most modern composers. Line 3f) generates two random numbers.
The number j is used as a duration number, and p is used as a note
pitch number. The two of them are then used in the BEEP instruction
in line 4(), and the results are, to say the least, interesting. It doesn’t
sound like Mozart, but, let’s face it, who else does?

' Chapter 10
The Game — Squids In

This is a game which makes use of all the techniques that have been
explained in this book. The way in which the game, SQUIDS IN, is
designed follows the advice in Chapter 6. Because the techniques
should be familiar to you, only a brief outline of some points will be
given here.

The first point concerns the graphics. User-defined graphics have
been used for the diver, the squid, the dart and the explosion. Since
this printout was taken from a working program, the shapes have
been printed in lines 219 to 240). The actual letters that have to be
pressed in these lines are s inline 21§, min line 22, d in line 23¢) and p
in line 240,

The starting position of the squid is held by the values of x and y,
and the starting position of the diver is held by a,d. Both of these sets
of quantities change as the two characters are moved. The wiggling
action of the squid is programmed by lines 609 to 650, and the
movement of the diver is programmed by lines 410 to 43¢. The squid
will kill the diver if it gets near enough, and this is ensured by line 430.
Similarly, the dart will kill if it gets close enough in the horizontal
direction, and this is programmed in line 480.

Rolling your own

You can modify this program to suit yourself. You may want to
change the scoring system in lines 71¢) and 96§ so that your scores
look better! You can reduce the speed of the squid by printing it in
three pieces, using the method that was explained in Chapter 7.
Similarly, you can speed up the dart by using LET b=b+2 in line 46.
You will then have to use PRINT AT d,b—2 inline 5¢) to ensure that
the old image of the dart is wiped. If you want to make the game more

The Game - Squids In 99

difficult, you can increase the wiggling motion of the squid; if you
want to make it easier you can reduce the wiggle. This can be done by
testing the value of j in line 62). For example, if you program:

619 LET R=0
62¢ LET j=RND: IF j<.2 THEN LET R=R—1|
625 IF j>.8 THEN LET R=R+I

this will reduce the wiggling considerably. It’s your game, and you
can try if you want to!

Squids In

finitions
2@ LET dart=18: LET score=0
3R GO SUR 1288 REM titte)
48 GO SUB 13@3: REM instructsio

5 GO sSUB 2o@a: REM characters
&2 GO S5UB 3@
7B LEYT pl=0: GO SUBR 4@
6@ IF dart>@ THEN GO TO 6@
. 98 PRINT AT 19,8, "Your score i

“;s8CO

180 PRINT 'Hnother game? Pleas
press # e o

118 LE lg-INKEY; IF k%="" THE
N GO TO

i2e IF u$="9" OoR ="¥Y" THEN L
T dart=1@8: GO TO 6’ i
150 GO TO 9999
20@ FOR a=0 TO_7: READ d,e,f,a

21@ POKE USR "+a,d
220 POKE USSR " +a,e
230 POKE USR "+, a,rf

24@ POKE USR "'/ s+3

25@ NEXT a: RETuRN >

380@ FAPER 1: CLS

310 LET x=23@: LET

32@ PRINT AT u, N &; CHRS .

330 LET &=1: LET d=12: LET =2 -
34@ PRINT AT d,a; INK 7; CHRS 15

35@ RETURN
40@ GO SUB 60@: IF x<2 THEN (cln)

410 IF INKEYS$="u" THEN INK 1: B
RINT AT d,a; CHRS 156: LET d=d-1:
INK 7: PRINT AT d,a; CHR$ 156
420 IF INKEY&$="d" THEN INK 2 P
RINT AT d,a; CHR 156: LET d=d+1:
INK 7: PRINT =] d,a; CHR$ 1886
4380 IF ABS x+g—a—d<2 THEN GO Su

100 The ZX Spectrum

ve@: GO TO S4a@
diB IF INKEY%<>" " THEN GQ TO £

45B LET dart=dart-1
46@ LET b=b+1
478 IF RBS (X -—-3) <2 AND ABS (3y-d
J(E THEN GO SuBg 7e@: GO TO S4@
IF ABRS (b-X1} <2 AND d=y AND
b{ai THEN GC SUR 92@@: GQ TOQ S4nd
49@ PRINT AT d.b; INK 2;CHRS$ 14

S8 PRINT AT d4,b-1; INK 1;CHRY

S1@ GO SUB 688: IF x+«2 THEN GD
TO 54@

520 IF b<31 AND x3>1 THEN GQ TO
460
530 IF plL=0 THEM GO SUB 30@
540 RETURN
6@@ PRINT AT y,x; INK 1;CHR$ 18

£1@ LET R=1

EEBILET J=ERNE: IF ji.85 THEN LET
630 LET x=x-1: LET y=y+R: IF Yy°>
280 THEN LET y4=20

635 IF y+42 THEN LET %

540 PRINT AT J,X%; 6; CHR% 16

ssa RETURN

700 PRINT AT d.,b-1; INK 1;CHRS%
147: PRINT AT yY,x; INK 1;CHR$ 16
Z: PRINT AT d,a, INK ©6;CHRS 162:
FOR k=1 TO S@: BEEP .@2,5: BEEP
.B2,5.5: NEXT &

71@ LET sccre=score-20

720 RETURN

&@@ FOR k=1 TO S@: BEEP .02,S:
BEEP .@2,20: NEXT K

8108 RETURN

9@@ PRINT AT d,b-1; INK 1;CHR%
147: FOR k=1 TO S: BEEP .1,20: B
EEP .1,30: NEXT Kk

91@ LET b=31: LET plL=21

293@ PRINT AT y.,x: INK 1;,CHR% 18

2

9940 PRINT AT y,x; INK 2;CHR$ 1S

95@ FOR k=1 TO 20@: NEXT Kk
96@ LET score=score+l@@: RETURN

1@0@ DATA 252,16,0,129,4 ,16,&,6

&
1218® DATA 255,63,2.36, 15,56,

1820 DATA 15,24 ,2,0,255, 5@, aaééa
1@3@ DATA 4,34 ,0,66,252.65.0. 129
égQ?NERINT TAB11; FLASH 1. 4QUT

i21@ PAUSE 15@: RETURN

The Game - Squids In 101

I W eth el “ 0 amnmo +
N 8 Yw—dbo GCADEC C .
T Lono mcAa LE2~0 I3 DL W
0 O Ofxg%w +0%=-1U0vou +
el ILL v D @Im>L oW
P Ll m=~ G D S0 o >~
(] QU Nwedsr CLrLTUD-" o
O 32OMe AL mOWi@@ TV 2T
£ ="DUL=I+N L JNEVL+0C
D =0x U MoV DaDm
7] Qu D= %-DxZ23 1]
Z ME2NCO~ oTow2 ~ |-
H M Ea> W waDcweHMow Z
I AW~ o =0 > — WZ
v LOMW =T 0QOT ~ti+ -—0:
B o g~ 0 wSCTLLVOCTDWD
- ATt I o Malon3unaup
Aaxcc—-s:: MO - = <ol
ML Qw-Am: s > Mo M CCow
T 3> @ s I mz LI s L =il
B s O DL SR T S
HE e s Is v @e B
W We.daiuh.T" I 220 M
L m2DO+«ZDo00> 2 I Y0l
H HOo@2wmad HOors>»0I » v Bkl
C @ wor»c womEwmE - : o0 O
0L LLAns>-nwol £ =+ —ald
- DMmD ~h eerme=L L
B8 @ad+wn WB+~CcD 2 ~@mO@H
8 H20C Le |[cUWRDCWD ~ VN X
N+ 0 >»0%0n +NouIm Chunll-.
s =T ~D @ =DD ULgmL i

Chapter 11
A Data Processing Program —
Datamaster

Unlike the other programs in this book, this is a very long program
which was developed on a 48K Spectrum. It can be fitted into a 16K
machine by omitting the instructions and by dimensioning for fewer
entries, shorter entries, or both. If you are going to use your Spectrum
as a serious data processing machine, however, you really need the
extra memory of the 48K machine.

The program allows you to create a file of four headings. These can
be anything you like, but there must be four of them. You might, for
example, use headings such as NAME, PHONE NUMBER, DATE
OF BIRTH, DISTANCE AWAY. Once the headings are created,
you can (Menu option 2) use them to enter information under each
heading. Once you have made a list of the data, you can record it. The
data can be replayed, and you can list all of it, pick out one item,
change, delete, or sort the list. The sorting will be in order, either of
number or in alphabetical order. You can sort by any of your
headings. If you choose to sort by name, for example, the names will
be put into alphabetical order. If you sort by date of birth, the order
will be the order of age. If you sort by distance, the order will be the
order of distance, and so on.

A few precautions are needed. You should always answer ‘y’ to the
Scroll? question. The reason is that the program will stop if you don’t.
This is the normal action of the Scroll? question. Another point is
that if you find that the program has stopped, perhaps because you
answered ‘n’ to Scroll?, then you can get back to the menu by typing
GO TO 140. If you use RUN, all of your data will be lost. Note also
that when the data is recorded, the ‘press any key’ step occurs five
times — once for the titles, and then four times for the sets of data.

The program is constructed along the lines that we dealt with in
Chapter 6, so it should contain no surprises. Remember that you

A Data Processing Program — Datamaster 103

don’t have to type it into the machine in one go. You can type a
section at a time, saving the program on tape as you go, and replaying
it before you add more, until the whole program has been recorded.
Since the program has been designed to be ‘universal’, you may want
to tailor it to your own requirements. You may, for example, want to
use b$ for addresses, so that you need to dimension b$ to be longer. If
c$ and d$ are used for short items, like date of birth and telephone
number, they could be dimensioned for shorter strings. You might
not want to use all of the options, so you could delete some
subroutines. You might want to be able to add values in one heading,
so you would convert each item from a string back to a number by
using VAL. Note that this is possible only if the string is a pure
number string. You can convert ‘23.6’ but not ‘23.6 miles’.

Using the database

If you have never used a database program before, an example of how
this program can be used will probably be more useful to you than a
description of the program. Let’s imagine that you have decided to
use the database to hold details of your record collection. The items
that you need to know about each record are the title, the
performer(s), the disk or cassette number, and the date when you
bought it. if we assume that you want to use the database program as
it is, then you load the program from its cassette, and RUN it.

When the menu appears, you select the first option (‘Start new type
of file’). This allows you to enter your titles, so you press the ‘1’ key,
without using ENTER. After a short pause, you will see the heading
‘New file specification” appear, and under it the invitation to type
your titles. Just below that, you will see:

Heading 1 is_

When this appears, you would type, in this example, ‘Record Title’.
When you press ENTER, the words:

Heading 2 is_

will appear, and you can then type ‘Performer(s)’ and press
ENTER. You enter your other two titles in the same way.

Once this has been done, you can enter the details of all your
records. The program will return to the menu after selecting titles,
providing that you answer ‘y’ to the question: ‘Do you want to return

104 The ZX Spectrum

to the menu?. You can now press the ‘2’ key so as to select ‘Enter
items in file’. You don’t need to use ENTER here, because it’s a one-
key reply. The heading ‘Enter items’ will appear, with a brief reminder
about how to stop entering by typing xx. The words:

Entry No. |
Record Title

will now appear, and you can type the title of the first of your records.
When you press enter, you will see:

Performer(s)

appear, and you can type the name or names. When you have entered
this, you will be prompted for the disk or cassette number, which you
type and enter, and finally for the date when you bought it.

When you have typed the last item for this record, and pressed
ENTER, you will see:

Entry No. 2
Record Title

appear, so that you can now enter the information for the second of
your records. This process will continue until you enter xx (or XX),
which stops the entry process. Don’t try to enter a huge number of
items until you are familiar with the program. The number that you
can use is limited to 50 by the dimensioning in line 10, but a 16K
Spectrum will not accept so many entries.

At the end of entry, the program will, as always, return to the menu
when you answer ‘y’ to the question ‘Do you want to return to the
menu?. You should then pick the recording option, because once
your data is safely on tape, you won’t be in any danger of losing it (by
a power failure, forexample) as when it is in the machine. Press the ‘4’
key to record, and carry out the instructions. Note that you have to
watch over the Spectrum as this goes on. You will be asked to ‘press
any key’ for a total of five times to get all of the data on to a cassette.
Use a fresh cassette, nor the one you keep for the program.

Once you have done this, you still have the data in the machine, and
you can see what can be done. Return to the menu, and pick item 3.
This allows you to delete an item, removing all of its entries. Youcan
also amend an item, correcting spelling or altering a number or date,
without having to type all the information again, Option 7 lets you see
a list of all your entries, or pick one. If you press ‘1" to select ‘list’ you

A Data Processing Program - Datamaster 106

will see the first set of entries on the screen. The *scroll?” at the bottom
of the screen should a/ways be answered by ‘y’, so that you can see the
other entries in turn. If you answer ‘n’ to ‘scroll?, the program will
halt. If you do this by mistake, then press the CONT key, then
ENTER (easiest method) or press the GO TO key, then 13§, then
ENTER, which will take you back to the menu. If you do either of
these things, you won’t lose the data from the memory.

Do you want your records listed in alphabetical order of title? If
you do, press a menu option 6. You will be asked:

Which heading do you want to use for sorting?

and you will choose 1, since you want to sort by title. After a short
pause, you are asked if you want to return to the menu. The sorting
has been done, and if you want to see the list in order, just take menu
option 7, and ‘I’ for list. If, on the other hand, you wanted to have
your list sorted into alphabetical order of performers’ names, then
you would choose menu item 6, and then title 2. You could also listin
order of date of buying (to show records in order of age, from oldest
to youngest), or in order of record number.

Each time you use the program to work with your records data,
you can now ignore menu option 1. You will simply choose option 5
each time you run the program, so that you can put in the data and
work with it. You use option 1 only when you want to use the
program to create another file. Perhaps you want to file your
collection of banknotes, your list of British motorbikes of the fifties,
the locomotives of Sir Nigel Gresley, the bridges of Thomas Telford?
Whatever you want to do, the database can help you. The more you
explore its uses, the more useful you will find it.

All in all, it’s a program that you can play with, chop around and
mould to your own needs. The current price of such programs on
cassette is about £5 at the time of writing, so you have already saved
yourself a bob or two!

106 The ZX Spectrum

Datamaster

1 DIM B
BI $1§15 (20) : DIM bHiS@.2@

Q.2 : -
DIH & fS,EBl) DIM d3iSa,2a:

28 b BmE="Pltesse have th
a cassette re;dg. ol
3@ LET n$="Watch the bottom Li
ne for instructions"

48 LET j=1
n"gm LET yY%="Please answer 3y «fr
1908 CLS : LET t3="DRATABRASE"”: GO
SUB 10@®: REHM centre
11®@ PAUSE S: PRINT “"Do You nee
d instructions?" -
120 GO SUB 105®: IF k$="y"” OR kK
$="Y" THEN GO SUB 1108
iggBCLs : LET t%="MENU": GO Sus
14@ PRINT “"1.3tart new type ofF
file."""2.Enter items in fite."”
‘"3.Delete of Change items." "4.

Record file."’"s.ﬂeptag File,"""
6.PUt in order.”""7.List or pic#k
.;éaﬂéggaTor g?ve proaram."b

R ease Choogse
mber™: GO0 3UBR 1850 LET &= E gu

16@ GO SUBR 18@@+2@@xk: REM ﬂete
ct subrouvutine

17@ CLS : PRINT "Do you want to
return toc the” " menu”

15@ PRINT : GO SUB 185@: IF k%=
“y" OR k$="Y" THEN GO TO 140

2006 GO Ta 9999: REM end

l2@a@& PRINT TRB 16-LEM 13/2;1%: »
ETURN

1052 LET k$=INKEYS$: IF kg$="" OR
k =CHR$ 13 THEN GO TO 1as8a
RET

URN L
i1gg CLS : LET t1%="INSTRUCTIDNS
: GD SUB 1080
1185 PRINT TAB 2; “Start your fFil
"'"txtles. These ¢
v "iike NAME, RADDR
o on."’'""Four headings %
ed, but”“""not more than
rs each."”
Once you have fFiXx
£,"""you can then e€n
“’"each heading. The
“*"“recnrded, and e
s"""picked ouvt, List
into”""order. The sor
done” " "by heading, =
a
i

m
o
'
m
]
P
m
=
[3
pe]
a

0 e~G Mo

s W e~
Ta L~ ~8

oy LowaT ~gow

~etm OO0 GOQOMIT

T W=~ e+ e AN
TEI DWrrp~C

ﬁmmmm

-~

m

A 2

. n

n,”"""“for examnple, =
caliy”“""by name, by

O0~+MT ~Mmp CM
=

w0 M= =

A Data Processing Program - Datamaster 107

address, in order”""of telephan
& pumber, agze, "“"distance, OfFf ®w
| hatever you have" ' '"used for head \
ings. When the" ""List is recosrde |
d, the headings"” '"are recorded 1 ;
Doll

SUB 1058: RETURN
15808 INPUT q%: IF LEN q%3>20 THEN

1115 PRINT "“Press anyg key__'": GO !
|
PR;NT “Too Long_please change & |

| 200@ CLS : LET t&%i="New rite s
aéication": GO SUBR 100@: PRAUS

pE
E

' 2005 PRINT “"Now selecl your 1ti
les, using """ENTER. OQOnly four
itles can "“"be used. "
2012 FOR n=1 TO 4: PRINT “"Heads

g is__ '";,: GO SUB 1S@@: PRINT q%

2925 LET e3(n) =%

2038 NEXT n i

2035 PRINT "End of specificatio

. PAUSE 5@ T jliaacs +

204@ RETURN

2208 CLS : LET ts="Enter itlems':

GO SUB 1@@@: PRUSE 1@

2205 PRINT ““Items will be enters

ed until you"“"enter xXx as the ¥

irst of a set."”

2212 PRINT “"Entry NO. ";i;'

2215 PRINT e%i(1): GO SUB 15@@: I

E Es="xx" OR q$="XX" THEN GO TO

2240

2220 LET as(.jl=q%: PRINT a%ij):

PRINT e%(2): GO SUB 15@@: LET b%

(j)=q%: PRINT b%$(j)

§$255ﬁR¥NT‘e$égé&TG?‘?Q? 15ed: L
[o JF = 3 J

2230 PRI e$(4): GO SUB 1S@@: L

ET d%(j)=q%: PRINT d8()

210 !
2240 LET J=4-1: PRINT “"End of e L

W ot Y

2409 CLS : LET ts%="Changes to Fi

24025 PRINT ““"There are ";J4;" ent
ries.”°'“Do you want to add more? ‘
. G0 SUB 1858: IF k$="yY" OR k&%= ‘
v THEN GO TO 25ee ‘
241@ PRINT “: LET t$="Change of

delete”: GO SUB 198
2415 PRINT °“"You need to know th
e number OoF" ""the item that you

want to "“"change or detete.” " "P
Lease press SPRACE if you want" ™"

108 The ZX Spectrum

isting now. "'"Press any lette
ey if you"“‘"don’t want a Ltist
."': GO SUB 1859@: IF k=" "~ TH
GO SUB Seaa
5§ CLS : LET t$="Change cor del
": GO0 SuB 18ee
rr"please type number
4. then d For detete or
‘*"change (as 25d or i13c)
" press ENTER.
NPUT k%: LET q!-kStLEN us
LETTS-L$N K$-LEN Q%: LET
k=0 THEN GO TO 2455
$="d" OR ?s="D" THEN LE
eI W s gl S (R SR 5 i
LET d$t(k)="": GO TO 25&
IF q$="c" OR q%$="C" THEN GO
TO 2460
2455 PRINT “Incorrect answer of
";kz'" please"""try again": G T
o’ 2420

2468 CLS : LET t%="Changes"™: GO
SUB 1@ee
2465 PRINT “"For

WO~
*HH® HI0T7
<~ THe 82D
;
-

- -

S PRINT €% l: GO SuUB
St Bi(HEN LET b
J=q%: PRINT "“Change to- “;b%

@ PRINT 23(3);'5C$(k): G0 SuR
28a: IF $<>CHRS 32 THEN LET C
l=q%: PRINT “Changed tc- *",;C%$

S PRINT est(4),; ",d%(k): GO sSup
BA: IF q%<>CHRS% 3 THEN LET d
l1=q%: PRINT "Changed to- ";d%

9@ GO TO 2585
2508 LET j=j+1: GO SUB 2228

2608 CLS : LET t$s="Recording Fit
e“: GO SUB 1@@8: LET e%(5) =5TRS

2505 PRINT m%: PRINT "Make sure
it is wound to the" ‘" correct f =R«
24t 0ON0=""Nn%

251@ SAVUE "names" DRATA e%$i)

2615 SAVE "datbas" DATAH asi)

2620 SRAVE "datbas" DATAH b$()

e
a8

Umip N~th N~ U~ NI

Bt P T e o BT

A Data Processing Program - Datamaster 109

2625 SAVE ""datbas'" DATA Cc¥(}
2530 SAUVE “datbas" DATRA df()

2635 PRINT “Your file is now rec
?gged."‘"oo you want to verify i
PH40 GO SUB 1858@: IF k%="n" OR &
="N" THEN GO TO 2655
2645 PRINT "m%; " _"’"rewound. Pt
ease proceed"”’"as instructed."”
2650 VERIFY "names' DATA e$i{}: U
ERIFY "datbas' DRATA a%i): UERIFY
“datbas" DATA b)) : UERIFY "dat
bas"™ DATA Cc&%() : UERIFY "datbas"
DRATA d$()
2655 RETURN)
280@ CLS : LET t%="Replaying fil
e”: GO sSuB 1002
2805 PRINT “;m$: PRINT "Make sur
e it is rewound to the" " correc
t position, then press” "“the PLA

Y key of the recorder.”’';n%
2818 LORD "names" DHTH esil LET
J=UAL e% (S}

2815 LORD “"datbas" DATH a:t)
26828 LOAD "datbas" DATAR bs$()
2825 LOAD ''datbkbas" DATA c%(}
2830 LOAD "datbas'" DATA d%{}
835 PRINT “"Data loaded_please

wait": PRAUSE 1&@

2840 RETURN

3008 CLS : LET tg="Scort inta ard

er”: GO SUB 1aPda

SP005 PRINT “"Which heading d4c yo

U want to "““"use for sorting?”

3010 PRINT "1. ";e$t1 "E. ‘;esxt
'us. u. 5(3] ’lld- _;e’

3@15 PRINT “Please select bu num

ber_You do”"“"“not need to

NTER .

Z020 GO SUB 185@a: LET k=URL k%:

IF k<1 OR k>4 THEN PRINT “"Incorsrr

ect choice, 1 toc 4 ohly."""Pleas

e try again.": GO TO 3@15: GO 3SU
B S5@2
Z@3@ CLS : PRINT RT 5.,6; "Sorting

_please wait."
3835 LET uy=1

304@ LET y=2%y: IF y<j THEN GO T
0 3840

3048 LET u=INT ({y-1)3s2): IF y=8
THEN GO TO 3865

3@59 LET t=j-y: FOR m=1 TO t: LE

q=m
3@55 LET q+g GO SUB 6808 +2%k :
EET q_q—g q>@ THEN GO TO 3@

55
306@ HEXT m: GO TO 3@45

110 The ZX Spectrum

gggg RETURN

CLS ;: LET t$="List o =3 L

: GO SUB 1020 . . g rek

3205 PRINT “"Please select tist
ftJ or ick"“"“(p)_press key, don
t use NTER": GO SUEB 1asa

3210 IF k%="L" OR k%="L" THEN GO
SUB S@@@: GO TO 3255

32158 IF k$="P" OR K$="P" THEN GO
TO 32295

32280 PRINT "Faultg setLtecrion__ple

ase try "‘"again.”: GO TO 32@S
3225 FPRINT "Please enter number"

of items, "“"then press ENTER .

3230 INPUT g

3235 PRINT es$(l);"_",;a%iq)

3240 PRINT es$(2);"_":b%iq)

32485 PRINT e$t31;“_',c$rql

3[2580 PRINT e$td),;"_",d%5iq)

F255 PRINT “"“"Another one?iy of N
1*: GO sSuUB l1asae

326@ IF k$="9y" OR k$="Y" THEN 80
TO 32295

3270 RETURN

3400 CLS : LET t$="End of pragra
m”: GO SUB 10900

34605 PRINT “"Have 4you recorded y
our data?" *

3410 PRINT "XIfF you haven,t, pres

H TG tO get”""back 1o the recor

d step.'": GO SUB l1esSe: IF k$="n"
oR I’.$="N" THEN GO SUB 2680

3415 PRINT °“"END OF PROGRAM.": &

O TO 9999

S008 CLS : LET ts$="LIST"™: 60 SUB
1000

5085 FOR q=1 TO J

5810 PRINT q;". ‘;';a$tq];’;h$t

q);';cstqi,",dstq

S818 PRINT FFEFFFFEIFFEFFFFFFFFRS
EFFFFETEEFEE"

50828 NEXT

S225 PRINT ""Want to repea
n”"- GO SuUB 1e58: IF ks=

="Y" THEN GO TO S0es
5 3@ RETURN
6EPP2 IF ag(z) <asiq) THEN GO SUB

62883 RETURN
65084 IF b%(zZ) <b%i(q) THEN GO SUB

6885 RETURN
E086 IF cs(z)<csiq) THEN GO SUB

5007 RETURN
COd8 IF ds(z)<<d$(q) THEN GO SuB

8N OfF
" Tron

A Data Processing Program - Datamaster 111

650039 RETURN

7005 LET x$=a%(z): LET agiz)=as(
g1l LET a%(q)=x%
2210 LET x$=b%(z): LET b%(Z)=b%${
qQ): LET b%i(q)=x%
7815 LET x$=c$(z): LET cHiz)=c%(
: LET c%(q)=x%
220 LET x?zd!tzl: LET d$(z)=d8(
q): LET d%$(q)=x%
7025 LET x%="": RETURN

l Appendix A
Cassette Loading Problems

If you find that your own programs which you have recorded will re-
load perfectly, but that programs that you have bought on cassettes
will not, then the fault may be in your recorder. A tapeis replayed by
pulling the tape past a magnetic tapehead, and this tapehead may be
slightly tilted. A recording that is made on a machine whose head is
not tilted will not play back satisfactorily on a machine which has a
tilted head. In the same way, a recording that has been made on a
machine whose head is tilted will play back on the same machine, but
not on a machine whose head is correctly aligned, or one which has a
head tilted in the opposite direction. The amount of tilt is adjustable,
and the adjustment is fairly simple. You need only a cassette with a
program that refuses to load, and a small jeweller's screwdriver.

Place the cassette in the recorder, and remove the mains lead and
all the signal jack plugs. Press the PLAY key of the recorder and
watch what happens. If the lid of the recorder is transparent, you will
see the mechanism, including the replay tapehead, moving up to the
cassette. Any adjustment will have to be made while the tapehead is in
this position. Look for a small hole drilled in the casing of the
recorder, just between the lower edge of the lid and the keys (Fig. A1),
This hole is located exactly above the adjusting screw of the tapehead.
Put the end of the screwdriver into this hole and try to locate itin the
head of the adjusting screw. If you cannot grip the screw, you may
have to use a different size of screwdriver. If your cassette recorder
has no adjustment hole, then you will either have to take it to a
specialist repairer or buy a different recorder!

Once you have found the adjusting screw and can turn it, turn up
the volume control setting of the recorder, and plug the mains cable
in. When you hear the sound of the tape replaying, adjust the screw so
that the sound is sharp and piercing, not dull and muffled. This

Appendix A 113

W
O O

adjustment Lid for cassetle

hole | ‘

—

Recording RECOHDINCtAUTOMATIC croe ——1
light
In:

REC REw FFWD PLAY STOP EJECT
®) < PP > a w

TROPHY CR100

/ L~

/]
L

keys *

Fig. A1. The adjustment hole for the head of the CR100 cassette recorder.

should not require much adjustment, no more than one eighth of a
turn of the screw either way. If adjustment makes the note seem even
more muffled, then you are turning the screw in the wrong direction.
You should be able to find a position in which the note is as shrill as it
can be. At this position, turning the screw in either direction will
make the note sound muffled. Once you have found this setting for
the most shrill note, you can withdraw the screwdriver, switch off and
remove the cassette. Replace the jack plugs, and try to load the
troublesome program. You should find that it will load once you get
the setting of the volume control correct.

The trouble now is that the cassettes which you recorded for
yourself before making the adjustment may not load any longer! It
doesn’t always happen this way, and quite often they will load, but are
more fussy about volume control settings. If you can load them, make
new copies. If they will not now load, then you may have to try to find
a compromise setting of the head adjustment screw which will allow
you to load both your own cassettes and the bought ones. If thisisn’t

114 The ZX Spectrum

possible, you may have to juggle with the head adjustment, finding a
setting for loading your programs, and then re-adjusting it before
saving the programs again. This is such a nuisance that it’s better to
make any head adjustments long before you have a large stock of
cassettes recorded.

Appendix B
A Useful Hint on Saving Data

Having to remove the EAR plug from the cassette recorder each time
you SAVE a program or data is tedious, and is not always easy to
remember. Several types of recorder will allow you to work with the
EAR plug in place if a small modification is carried out to either the
cassette leads or to the recorder. The modification to the lead consists
of cutting the EAR plug off and replacing it with another jack plug of
the same size. A miniature 330 ohm resistor is soldered across the
contacts of this plug before the leads are attached. If you are
experienced in electronics servicing, or know a friend who is, an
alternative position for this resistor is across the switched contacts of
the EAR socket of the recorder. This method has another advantage
— you can hear the sound of a program loading!

The modification is simple for the Trophy and Boots recorders,
and works very well though it does not appear to work on a few other
makes.

absolute co-ordinates, 82
aerial adaptor, 2
aerial plug, 2
amplitude, 94
animation, 73
apostrophe, 17
arcade games, 70
array, 49

ASCII codes, 45
assignment, 22
asterisk symbol, 15
AT, 19

ATTR, 91

backslash, 15

BEEP, 95

better animation, 77
binary fraction, 30

blank cassettes, 8

Boots CR325 recorder, 8
BORDER, 68

BREAK, 6

breaking a loop, 32
bytes of memory, 51

carriage return, 7
cassette lead, 8
cassette recorders, 8
castle shape, 84
centring titles, 19
character grid, 75
CHRS, 47

CIRCLE, 88

CLS, 15

CODE, 46

colour, 66
comparing numbers, 36
comparing words, 48
concatenation, 25, 45

Iindex

copyright notice, 6
core program, 57, 58
cursor, 7

cycle of wave, 93

DATA, 38, 52
database programs, 54
datamaster program, 102
decision steps, 34
decrementing, 27
designing characters, 74
designing programs, 54
detecting a wall, 92
dial tuning, 4

DIM, 50

dimension, 50

direct mode, 13

dollar sign, 23

DRAW, 82

duration number, 95

EAR, 8

end instruction, 41

ENTER, 7

error check list, 12 \
expression, 22, 34, 42

extension lead, 3

filename, 10, 52
fine-tuning, 6

FLASH, 68

flashing asterisk, 42

FOR, 32

forbidden operation, 24
foundation of program, 56
frequency, 94, 95

game program, 98
GOTO, 31

GOTO 9999, 41
graph pad, 72
graphics, 25, 43, 66
graphics mode, 43

hardware. |
helicopter shape, 73
hertz, 93

high resolution, 66, 79
HORIZONS tape, 11

LESAS

incorrect tuning, 3
incrementing, 27
INK., 68

INKEYS. 39

inner loop, 33
INPUT, 26

instant graphs, 81
instruction words, 13
INVERSE, 67

joining strings, 25

keyboard. 6
keyclick, 93

leader of tape. 9

LEN. 44

LIST. I, 15
loco-drawing program, 90
locomotive shape, 89
long variable name. 24
loop, 31

loudness, 94

low resolution. 66
lower-case, 21

mains cable, |

mains sockets, 3
mathematical operations, 27
mechanical push buttons, 5
menu, 41

MERGE, 59

MIC, 8

Middle C. 95

modulator, 3

mugtrap, 36
multistatement line, I8

neat printing, 17
nested loops, 33
never-ending loop, 31
NEW, 10

Index 117

NEXT. 32

number abilities, 27
number functions, 28
number guessing game, 36

oclave, 95
outer loop, 33

PAPER, 68

part circles, 86
passing variable. 44
pattern design, 72
PAUSE. 50

phono plug, 2

piano keyboard, 95
picture defects, 5
pixels, 79

planning, 55

planning graphics, 72
planning grid, 80
PLOT, 79

plug. |

POINT, 91

POKE, 76

precision of numbers, 29
PRINT, 16

PRINT AT grid. 20
print modifier, 16
producing columns, 19
program design, 54
program mode, 13
program outline plan, 55

quote mark, 10

radians, 87

random music, 97
RANDOMIZE, 61
READ. 38
recording programs, 8
REM, 57
repetition, 31
reserved words, 13
resolution, 66
RESTORE, 39
rising pitch note, 96

SAVE, 9, 52
saving arrays, 51
scale, 95
semicolon. 16
semitone, 95

single key reply, 39
slicing, 44

118 The ZX Spectrum

sound, 93
soundwave, 94
Squids In, 98

star animation, 85
star pattern, 83
SIEP, 32

string function, 43
string variable, 23
subroutine, 40
subscript, 49
subscripted variable, 49

TAB, I8

tabulation, I8
terminator, 34, 60
testing strings, 36, 47
three-way adaptor, 3
TO, 44

tone, 95

totalling numbers, 34
touch pads, 5

tuning TV, 4

tuning signal, 4
TV cable, 2
TV receiver, 2

uncontrolled loop, 32
upper-case, 21
user-defined graphics. 98
using the database. 103
USR, 76

variable name, 22
variable not found, 27
VCR button, 4
VERIFY, 10

warbling note, 96
wiggling motion, 98
wine glass shape, 87
wiping pattern, 74
working copy, 58

ZX Microdrive, 51
ZX power supply, |

Vﬁ"—w"*;"' R - NG S PR T s LT "'""‘1"'“"’"*7
The ZX Spectrum is a remarkably inexpensive and
understandably popular computer with colour and
sound facilities. It brings personal computing within the

reach of everybody, but learning quickly how to get
the best from your new machine can be difficult.

THE ZX SPECTRUM

will get the beginner off to a good start, providing
many useful programs so that all the family can enjoy
exploring the facilities of this versatile micro.

e ———— e

As well as showing you how to write programs from
scratch, this book includes a complete, original, high-
quality game and a practical database program
designed to help you organise your home and
business life.

Can you afford to be left behind in the microchip
revolution? Find out about computers and
programming now!

IN THE SAME SERIES FROM PANTHER BOOKS
THE ZX 81
THE DRAGON 32

e e e e e R et e e e B

Front cove phoiogeaph by ISBN 0-58bk-0L1L0O4-5

HANDBOOK

m\‘ 00295
U.K. £2.95 NEW ZEALAND $9.95 “ ||
AUSTRALIA $9.95 (recommended) 9 "780586"061046

